
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 6 6e7 6
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/cose
Evaluating the privacy of Android mobile
applications under forensic analysis
Christoforos Ntantogian*, Dimitris Apostolopoulos, Giannis Marinakis,
Christos Xenakis

Department of Digital Systems, University of Piraeus, Piraeus, Greece
a r t i c l e i n f o

Article history:

Received 30 October 2013

Received in revised form

16 January 2014

Accepted 20 January 2014

Keywords:

Privacy of mobile applications

Mobile forensics

Android

Memory dump

Mobile applications

Volatile memory

Authentication credentials
* Corresponding author. Tel.: þ30 2104142776
E-mail addresses: dadoyan@unipi.gr

(G. Marinakis), xenakis@unipi.gr (C. Xenakis
0167-4048/$ e see front matter ª 2014 Elsev
http://dx.doi.org/10.1016/j.cose.2014.01.004
a b s t r a c t

In this paper, we investigate and evaluate through experimental analysis the possibility of

recovering authentication credentials of mobile applications from the volatile memory of

Android mobile devices. Throughout the carried experiments and analysis, we have,

exclusively, used open-source and free forensic tools. Overall, the contribution of this

paper is threefold. First, it thoroughly, examines thirteen (13) mobile applications, which

represent four common application categories that elaborate sensitive users’ data, whether

it is possible to recover authentication credentials from the physical memory of mobile

devices, following thirty (30) different scenarios. Second, it explores in the considered

applications, if we can discover patterns and expressions that indicate the exact position of

authentication credentials in a memory dump. Third, it reveals a set of critical observa-

tions regarding the privacy of Android mobile applications and devices.

ª 2014 Elsevier Ltd. All rights reserved.
1. Introduction

According to recent reports (http://blog.flurry.com/bid/88867/

iOS-and-Android-Adoption-Explodes-Internationally), the

global adoption of smart phones and tablets has been growing

faster than any other consumer technology in history. These

small factor devices introduce a new processing and

communication paradigm, enabling end-users to access and

manage a broad set of data and services, while on the move.

To materialize this, a wide range of mobile applications have

been developed, which are extending from entertainment and

gaming to critical mobile banking and proprietary enterprise

applications for accessing corporate resources.
.
(C. Ntantogian), apos
).
ier Ltd. All rights reserve
Along with great opportunities, mobile devices reveal new

attack vectors for the involved parties (i.e., users, service

providers, data owners, etc.) (Mylonas et al., 2013). It is a fact

that mobile devices can be easily stolen or misplaced, due to

their compact size. The loss of a mobile device can lead to

major privacy breach, since emails, social activities, pictures

or any other stored data can be disclosed. A study in 2011,

named as the lost smart phone problem (Ponemon Institute

LLC, 2011), determined that in a 12-month period 142,708 out

of 3,297,569 employee smart phones were lost or stolen, i.e.,

4.3 percent per year. Moreover, in 2012, researchers from

Symantec presented their results of the Smartphone Honey

Stick Project (Wright, 2012). In this project, 50 smart phones

were, intentionally, lost in cities around the U.S. and Canada.
tolopoulos@unipi.gr (D. Apostolopoulos), marinakis@unipi.gr

d.

http://blog.flurry.com/bid/88867/iOS-and-Android-Adoption-Explodes-Internationally
http://blog.flurry.com/bid/88867/iOS-and-Android-Adoption-Explodes-Internationally
mailto:dadoyan@unipi.gr
mailto:apostolopoulos@unipi.gr
mailto:marinakis@unipi.gr
mailto:xenakis@unipi.gr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2014.01.004&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2014.01.004
http://dx.doi.org/10.1016/j.cose.2014.01.004
http://dx.doi.org/10.1016/j.cose.2014.01.004

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 6 6e7 6 67
The phones were loaded with logging software, so that

Symantec could keep track of all activities. The study came to

the result that in the 96 percent of the cases, the finders had

accessed the personal data (e.g., email, photos, etc.) that was

stored in the lost devices. Moreover, on nearly half of them (43

percent), the finders had attempted to access the owners’

online banking applications.

The proliferation of mobile devices has also led to the birth

of mobile digital forensics, a branch of digital forensics that

deals with the recovery of digital evidence or data frommobile

devices, under forensically sound conditions. The latter de-

notes the acquisition of identical copies of the entire available

evidences/data, without causing any alteration to the under-

lying device. Currently, most of the forensic research on mo-

bile devices has been focused on: (i) the acquisition and

analysis of the internal flash NANDmemory and SD Cards; (ii)

the understanding of the employed file systems; and (iii) the

scrutinizing of the application files for identifying malware.

However, little attention has been paid to the research on the

acquisition and analysis of the volatile memory, also referred

as random access memory (RAM), of mobile devices. This is

the motivation of the present work, which focuses, explicitly,

on the volatile memory of mobile devices. Moreover, this type

of memory holds, temporary, the authentication credentials

(i.e., usernames and passwords) submitted by the users to acti-

vate security critical applications (e.g., mobile banking, pass-

word managers, etc.).

Previous research has proved that forensic investigators

can discover critical information in the volatile memory of

desktop computers, like users’ authentication credentials

(Karayianni et al., 2012). Thus, it ismotivating to examine if we

can discover such information in the volatile memory of

mobile devices. Considering that 61 percent of the Internet

users reuse authentication credentials on multiple websites/

services (Consumer Survey, 2012), we realize that sometimes

the disclosure of a username and/or password is sufficient to

compromise the privacy of all the user’s applications (Mylonas

et al., 2013). Especially, in case of applications that deal with

sensitive data or functionality (e.g., banking, password man-

agers, e-shopping, etc.), an exposure of authentication cre-

dentials can lead to major privacy breach.

In this paper, we investigate and evaluate through exper-

imental analysis whether we can discover authentication

credentials of mobile applications in the volatile memory of

rootedmobile devices, following thirty (30) different scenarios

(i.e., eleven (11) general scenarios with some time variations).

We focus on mobile devices that operate with the Android

operating system (OS), because it is the most widely used one

(IDCWorldwide Quarterly, 2013). To perform the experiments,

we follow a procedure for the acquisition of the volatile

memory of rooted mobile devices, under forensically sound

conditions. Throughout the carried experiments and analysis,

we have, exclusively, used open-source, free forensic tools. In

total, we have evaluated the privacy of thirteen (13) popular

Android applications, which represent four common appli-

cation categories (i.e., mobile banking, e-shopping/financial

applications, passwordmanagers, and encryption/data hiding

applications) that elaborate sensitive users’ data. For every

investigated application and each studied scenario, we have

performed two set of experiments with different objective
each one. In the first one, our goal was to check if we could

recover our own submitted credentials from the memory

dump of a mobile device. In the second experiment, the goal

was to find out patterns that indicate where the credentials

are located in a memory image. Overall, the contributions of

this paper are as follows:

(i) Examine for each investigated application and studied

scenario whether we can discover authentication cre-

dentials in the physical memory of mobile devices;

(ii) Explore in the considered applications, if we can

discover patterns and expressions that indicate the po-

sition of authentication credentials in a memory dump;

(iii) Derive a set of critical observations that provide insights

for the privacy of mobile applications under various

mobile usage scenarios.

The rest of the paper is organized as follows. Section 2 gives

background information for Android OS and the related work.

Section 3 presents the procedure for the acquisition of the

volatilememory of Androidmobile devices. Section 4 analyzes

the carried out experiments. Section 5 elaborates on the re-

sults, providing generic observations and remarks regarding

the privacy of authentication credentials in Android devices.

Finally, section 6 concludes the paper.
2. Background

2.1. Android operating system

Android is a Linux-based OS designed, primarily, for touch

screen mobile devices such as smart phones and tablet com-

puters. Since its appearance, Android followed an upward tra-

jectory andwide acceptance, reaching triple-digit of growth for

the last year (IDC Worldwide Quarterly, 2013). Today, it holds

approximately 75 percent of the world market and there have

beenmore than 48 billion of Android applications’ installations

so far, characterizing it as the fastest-growing mobile OS.

Android utilizes native open-source C libraries to perform

OS tasks and Java as a language for developing applications.

To execute them, it uses the Dalvik virtual machine

(Bornstein, 2008), which creates Dalvik executable files .dex

(i.e., byte codes from .class and .jar files), designed to be suit-

able for systems that are constrained in terms of memory and

processor speed. Each Android application runs in a separate

process within its own Dalvik instance, relinquishing all re-

sponsibility for memory and process management to the

Android run time, which stops and kills processes as neces-

sary to manage resources (http://mobworld.wordpress.com/

2010/07/05/memory-management-in-Android/).

Android devices employ three different types of memory,

each of which serves different purposes: (i) the volatile

memory (i.e., RAM) that loses gradually its data when power is

switched off; (ii) the internal, non-volatile memory that is

based on NAND flash technology, which does not require

power to retain data; and (iii) the external, expandable, non-

volatile memory in the form of SD card. Both flash and SD

cardmemory store the Android file system, named YAFFS2, as

well as applications’ and multimedia files.

http://dx.doi.org/10.1016/j.cose.2014.01.004
http://dx.doi.org/10.1016/j.cose.2014.01.004

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 6 6e7 668
In some security sensitive mobile applications (i.e., mobile

banking, financial applications, password managers, etc.), the

users’ credentials (e.g., username and password) are never

stored or cashed in the non-volatile memory (i.e., flash

memory or SD card), trying to eliminate the possibility to be

compromised and misused. Each time such an application is

activated, the user is obliged to re-type and resubmit its

credential to gain access to the provided services. The cre-

dentials, which are only residedwithin the volatilememory of

mobile devices, are defined as data in motion (Hoog, 2011). In

this work, we examine the potential of discovery authentica-

tion credentials, which exclusively exists as data in motion,

evaluating the security and privacy that these mobile appli-

cations support.
2.2. Related work

Mobile devices constitute an important source of evidence for

every forensic investigator, since they store a plethora of

interesting information, such as locations, incoming and

outgoing calls and messages, emails, browsing information,

application usage, multimedia files, etc. Driving by this fact,

the majority of the current forensic research on Android de-

vices has been focused on the acquisition and analysis of the

internal NAND flash memory and SD cards, presenting sig-

nificant results regarding the YAFFS2 file system, as well as

the data stored in it. Using also forensic techniques, re-

searchers have achieved the investigation of Android appli-

cation package (.apk) files, used to distribute and install

applications on Android, for malware. However, to the best of

our knowledge, little attention has been drawn to the acqui-

sition and analysis of the volatile memory of Android devices.

In our previous work (Apostolopoulos et al., 2013), we have

employed the Dalvik Debugging Monitor Server (DDMS) tool

(http://developer.Android.com/tools/debugging/ddms.html)

that comes with the Android software development kit to

dump the memory contents of a running process. Using

DDMS, we examined the memory snapshots of a sufficient

number of mobile applications instances, and we discovered

authentication credentials in the majority of them. A limita-

tion of this work is related to the fact that the memory dumps

were acquired from an Android emulator, rather than an

actual Android device. Moreover, DDMS has limited capabil-

ities for forensic analysis, since it cannot dump the entire

memory of the device.

In Müller and Spreitzenbarth (2013), the authors have

proved that cold boot attacks against Android mobile devices,

equipped with ARM processors, are possible. To accomplish

this, they used a Galaxy Nexus mobile device in which the

bootloader had been unlocked and the disk partition of user

data was encrypted. They were able to retrieve the employed

key of the encrypted partition of the disk from the volatile

memory of the device, and, then, decrypt it. The authors also

mentioned that on devices where the bootloader is locked,

any attempt to break the disk encryption will result in the

deletion of the data stored in it. However, they managed to

retrieve personal information such as contact list, emails,

photos, etc., from the device’s volatile memory. Finally, the

authors have developed a recovery image, named FROST, to
automate the process of retrieving the employed encryption

keys.

In Thing et al. (2010), the authors have achieved to dump

specific memory regions of a running process using the ptrace

system call, which enables a process to inspect and control

the execution of another process. The carried experiments

and the consequent analysis were focusing on discovering

evidences from chat applications (i.e., incoming and outgoing

messages). A limitation of this approach has to do with the

fact that each process of interest requires an exclusive

memory extraction, which leads to more than one interaction

with the mobile device that may cause overwrites and loss of

evidences. Trying to address this, the authors of (Case, 2011)

have presented the first, public analysis of the Android’s

Dalvik virtualmachine. This work includes the Dalvik’s design

as well as proposes a method of accessing it, leading to the

recovery of forensically interesting information, such as his-

tory of calls, voicemails, browsing history, and wireless local

area network keys.

Volatilitux (Girault, 2010) provides a framework (written in

python programming language) for analyzing the volatile

memory of a Linux-based system. It enables the extraction of

digital artifacts from a memory dump, but it supports a

limited set of analysis capabilities, such as enumeration of the

running processes, memory map of the running processes,

etc. Moreover, up to now, there is no anymodule for acquiring

the volatilememory fromAndroid devices. Thework in http://

thomascannon.net/projects/android-reversing describes a

technique for dumping thememory of an Android application

using the kill command, which terminates a running process

of an application. Analyzing the captured memory snapshot,

the authors have succeeded to retrieve an encryption key used

by the application under investigation. However, it can only be

applied up to Android v2.1, since in the later versions this

command has been removed.

The main limitations of the related work have to do with

the following two facts: (i) it is acquired, only, a portion of the

Android volatile memory; and (ii) the obtained memory

snapshots are related to specific applications. Therefore, the

carried out analyses as well as the related findings are

confined to the above. In this paper, we manage to overcome

these limitations by obtaining a full capture of the volatile

memory of an Android device, which is forensically sound,

and analyzing it, thoroughly. A forensically sound acquisition

allows us to obtain copies of the volatile memory, which are

identical to the physical memory of the mobile device; while

the procedure itself does not alter the original device.
3. Volatile memory acquisition procedure

To dump the volatile memory of a rooted Android mobile

device, we used an open-source forensics tool named, Linux

memory extractor (LiME) software (http://code.google.com/p/

lime-forensics). LiME is a loadable kernel module, which al-

lows the acquisition of the volatile memory from Linux and

Linux-based devices, such as those powered by Android. LiME

is able to acquire the memory pages in a forensically sound

manner (approximately 99 percent of memory pages), since it

minimizes the impact on the physical memory of the target

http://dx.doi.org/10.1016/j.cose.2014.01.004
http://dx.doi.org/10.1016/j.cose.2014.01.004

Fig. 1 e A flowchart of the procedure for the acquisition of

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 6 6e7 6 69
device when transferring data to and from it. To achieve this,

LiME has been designed with the following features:

(i) Only a single binary (i.e., the LiME module) needs to be

transferred to the device and executed to perform the

memory acquisition.

(ii) The LiME module has a minimal memory footprint,

since it is very small (w70 KB)

(iii) LiME requires very few kernel functions to perform the

memory dump.

(iv) LiME requires minimal interaction with userland, since

data reading and writing is handled within the kernel.

In this way, LiME avoids hundreds of system calls and

other function invocations that would otherwise need

to be performed and modify the volatile memory.

Fig. 1 depicts the procedure and the required steps that

should be followed to acquire a forensically sound memory

image from an Android mobile device. In this procedure, we

assume that the Android device is rooted. If it is not rooted, we

should attempt to gain root privileges on the device, since

LiME requires root privileges to performmemory dump (Sylve

et al., 2012). There are various reliablemethods for Android OS

that allow privilege escalation from normal user to root

(Abbott, 2012; Kramer, 2010) and we don’t analyze them

further. Themost important part in the rooting procedure is to

assure that the mobile device is not rebooted, since volatile

memory cannot retain its data without power. Next, we create

a loadable kernel module, named lime.ko, which is an object

file that contains code to extend the running kernel func-

tionality of an OS, such as Android. Technical details for the

process of creating the lime.ko module can be found in (http://

code.google.com/p/lime-forensics). After creating lime.ko, we

acquire a forensically sound image of the device’s SDmemory

card, using an open-source imaging tool called dd (http://

www.forensicswiki.org/wiki/dd). The reason that we have to

undertook this step is that the module lime.ko should be

copied in the SD card. Since an important principle in forensic

investigations is to avoid tampering the evidence, we have to

acquire a raw image of the SD card, before copying themodule

lime.ko into the device’s SD memory card. In this way, we

ensure that our results are forensically sound.

In the sequel, we copy the module lime.ko into the SD

memory card of the mobile device. After that, we, physically,

connect the mobile device to a computer, using a universal

serial bus (USB) interface. Next, as root, we execute in the

mobile device the command insmod to insert the lime.ko

module into the Android kernel. At the same time, the

dumping process starts, where the memory dump is down-

loaded from the Android device to the computer through the

Android Debug Bridge (adb) (http://developer.android.com/

tools/help/adb.html). The time, required to end the dumping

process, depends on the size of the volatile memory of the

examined mobile device.
the volatile memory of a rooted Android mobile device.
4. Experiments

In this section, we present and analyze the carried out ex-

periments. In a three months period, we examined thirteen
(13) Android applications in total, which elaborate sensitive

users’ data. Themajority of the examined applications release

updates frequently. It is worth mentioning that all experi-

ments were performed with the latest version of the

http://dx.doi.org/10.1016/j.cose.2014.01.004
http://dx.doi.org/10.1016/j.cose.2014.01.004

Table 1 e Summary of the experiment scenarios.

Scenarios Description of steps

Scenario 1

S1.a Login, use, logout, immediate dump.

S1.b Login, use, logout, device idle for 10 min, dump.

S1.c Login, use, logout, device idle for 20 min, dump.

S1.d Login, use, logout, device idle for 60 min, dump.

Scenario 2

S2.a Login, use, logout, use it as a phone for 10 min, dump.

S2.b Login, use, logout, use it as a phone for 20 min, dump.

S2.c Login, use, logout, use it as a phone for 60 min, dump.

Scenario 3

S3.a Login, use, logout, use it as a smart phone for 10 min,

dump.

S3.b Login, use, logout, use it as a smart phone for 20 min,

dump.

S3.c Login, use, logout, use it as a smart phone for 60 min,

dump.

Scenario 4

S4.a Login, use, set the application into the background,

immediate dump.

S4.b Login, use, set the application into the background,

device idle for 10 min, dump.

S4.c Login, use, set the application into the background,

device idle for 20 min, dump.

S4.d Login, use, set the application into the background,

device idle for 60 min, dump.

Scenario 5

S5.a Login, use, set the application into the background,

use the device as a phone for 10 min, dump.

S5.b Login, use, set the application into the background,

use the device as a phone for 20 min, dump.

S5.c Login, use, set the application into the background,

use the device as a phone for 60 min, dump.

Scenario 6

S6.a Login, use, set the application into the background,

use the device as a smart phone for 10 min, dump.

S6.b Login, use, set the application into the background,

use the device as a smart phone for 20 min, dump.

S6.c Login, use, set the application into the background,

use the device as a smart phone for 60 min, dump.

Scenario 7

S7 Login, use, logout, use task killer, immediate dump.

Scenario 8

S8.a Login, use, logout, switch the device to airplane mode,

immediate dump.

S8.b Login, use, logout, switch the device to airplane mode,

device idle for 10 min, dump.

S8.c Login, use, logout, switch the device to airplane mode,

device idle for 20 min, dump.

S8.d Login, use, logout, switch the device to airplane mode,

device idle for 60 min, dump.

Scenario 9

S9.a Login, use, logout, switch the device to airplane mode,

use gaming applications for 10 min, dump.

S9.b Login, use, logout, switch the device to airplane mode,

use gaming applications for 20 min, dump.

S9.c Login, use, logout, switch the device to airplane mode,

use gaming applications 60 min, dump.

Table 1 e (continued)

Scenarios Description of steps

Scenario 10

S10 Login, use, logout, reboot, immediate dump.

Scenario 11

S11 Login, use, logout, switch off the device, remove battery

for 5 s, insert battery, switch on, dump.

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 6 6e7 670
applications, until June 1st, 2013. Each one of the considered

applications employs a username and/or password as data in

motion. Based on the provided functionality, the underlying

mobile applications are divided into four categories:

� mobile banking (m-banking) applications;

� e-shopping/financial applications (i.e., applications that

facilitate the mobile users to perform online payments or

buy goods);

� password managers (i.e., applications that manage in a

secure manner the passwords of the user);

� encryption and data hiding applications (i.e., applications

that aim at enhancing the user’s privacy on its mobile

device).

m-banking and e-shopping/financial applications employ

usernames and passwords to authenticate the mobile users,

enabling remote access to the provided services. On the other

hand, password managers, encryption and data hiding appli-

cations use only passwords (or the concatenation of a password

with a random string that increases entropy) as keys to

encrypt/decrypt passwords of other applications or other user’s

sensitive data such as calls, messages, etc. All the tested ap-

plications provide logout or termination functionality.

The m-banking category includes six applications of six

major banks in Greece (i.e., bank1, bank2, bank3, bank4,

bank5, and bank6). The e-shopping/financial category com-

prises three applications (i.e., financial1, financial2, financial3)

of well-known, international, e-commerce businesses that

allow financial transactions. The password manager category

consists of two applications (i.e., password1, password2) that

store and retrieve passwords in a secure manner. They employ

a master password to protect all the other mobile user’s pass-

words. Finally, the fourth category incorporates two applica-

tions (i.e., encyrption1, encryption2). The encryption1 uses a

secret password as a key to encrypt messages (i.e., SMSs) and

emails, sent and received by the mobile user. The encryption2

application, on the other hand, hides calls andmessages from

a specified contact from the contact list of the mobile device,

and the only way to depict them is the user, first, entering a

secret code in the dialer pad and then pressing the call button.

Our test bed is equipped with a rooted Samsung Galaxy S

Plus (i9001). This smart phone uses an Android v2.3 (Ginger-

bread), which is the most popular Android version (i.e., based

on the relative number of devices that running this Android

version), according to the Google’s statistics (http://

developer.android.com/about/dashboards/index.html). We

have studied thirty (30) different scenarios (see Table 1), which

are based on eleven (11) general scenarios with some time

variations (i.e., we acquired the volatile memory from the

http://dx.doi.org/10.1016/j.cose.2014.01.004
http://dx.doi.org/10.1016/j.cose.2014.01.004

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 6 6e7 6 71
inspected device after different time intervals). In every vari-

ation of each scenario, we have examined the entire set of the

considered applications, using our own created credentials to

login. For all scenarios, the dumping process lasted 9 min for

each one, while the size of the memory dump was approxi-

mately 512MB (it is equal to the size of the physicalmemory of

Samsung Galaxy S plus). The investigated scenarios as well as

their variations are, briefly, described below:

Scenario 1: Login, use and logout from the examined applica-

tions. We begin the memory dumping: a) immediately after the

logout; b) after waiting for 10 min; c) after waiting for 20 min;

and d) after waiting for 60 min. During the waiting time period,

we keep the mobile device idle (i.e., powered on without any use).

Scenario 2: Login, use and logout out from the examined ap-

plications.We begin the memory dumping after waiting, first, for

a time interval of: a) 10 min, b) 20 min and c) 60 min. During the

waiting time period, we use the mobile device only as a phone,

which means that it sends and receives phone calls and short

messages.

Scenario 3: Login, use and logout out from the examined ap-

plications.We begin the memory dumping after waiting, first, for

a time interval of: a) 10 min, b) 20 min and c) 60 min. During the

waiting time period, we use the mobile device only as a smart

phone, by activating various common Android applications such

as Gmail, Play Store, YouTube, Mp3 player, News reader appli-

cation, etc.

Scenario 4: Login and use the considered applications, but we do

not logout from them. Instead, we set them to run into the

background by pressing the home button of the mobile device.We

begin the memory dumping: a) immediately after setting the

application into the background; b) after waiting for 10 min; c)

after waiting for 20 min; and d) after waiting for 60 min. During

the waiting time period, we keep the mobile device idle (i.e.,

powered on without any use). This scenario was chosen because

many users instead of logging out and properly closing the ap-

plications, they simply press the home button and return to the

home screen.

Scenario 5: Login and use the considered applications, but we do

not logout from them. Instead, we set them to run into the

background by pressing the home button of the mobile device.We

begin the memory dumping: a) after waiting for 10 min; b) after

waiting for 20 min; and c) after waiting for 60 min. During the

waiting time period, we use the mobile device only as a phone,

which means that it sends and receives phone calls and short

messages.

Scenario 6: Login and use the considered applications, but we do

not logout from them. Instead, we set them to run into the back-

groundbypressing the homebutton of themobile device.Webegin

thememory dumping: a) after waiting for 10min; b) after waiting

for 20 min; and c) after waiting for 60 min. During the waiting

time period, we use the mobile device only as a smart phone, by

activating various common Android applications such as Gmail,

Play Store, YouTube, Mp3 player, News reader application, etc.

Scenario 7: Login, use and logout from the examined applica-

tions. After logging out, we employ a task killer to terminate all

the running processes, and, then, we acquire the volatile memory

of the device.

Scenario 8: Login, use and logout from the examined applica-

tions. After logging out, we switch the device to the airplanemode
(i.e., deactivate all the communication interfaces, wireless, 3G,

etc.). We begin the memory dumping: a) immediately after the

switching; b) after waiting for 10 min; c) after waiting for 20 min;

and d) after waiting for 60 min. During the waiting time period,

we keep the mobile device idle (i.e., powered on without any use).

Scenario 9: Login, use and logout from the examined applica-

tions. After logging out, we switch the device to the airplanemode

(i.e., deactivate all the communication interfaces, wireless, 3G,

etc.). We begin the memory dumping: a) after waiting for 10 min;

b) after waiting for 20 min; and c) after waiting for 60 min.

During the waiting time period, we only use game applications.

Scenario 10: Login, use and logout from the examined applica-

tions. After logging out, we switch off the mobile device, and then,

switch it on (i.e., rebooting). Immediately after rebooting, we

acquire the device’s volatile memory.

Scenario 11: Login, use and logout from the examined applica-

tions. After logging out, we switch off the mobile device and

remove the battery for 5 s. Then, we install the removed battery,

switch on the mobile device, and after the completion of booting,

we acquire the device’s volatile memory.

For each investigated application and studied scenario or

scenario variation, we have carried out two experiments with

different objective each one. In the first one, our goal was to

check if we could recover our own submitted credentials from

the memory dump of the mobile device. In the second

experiment, on the other hand, the goal was to find out pat-

terns and expressions that indicate where the credentials are

located in a memory dump. This would be beneficial in

forensic investigations, where the researchers have memory

images of Android devices and theymay use these patterns to

find unknown credentials. On the contrary, as a negative side

effect, if a malicious steals an Android device, it will try these

patterns to find out the credentials of the device’s owner.

To perform the experiments, we repeated the following

steps for each examined application and studied scenario.

First, we randomly choose and login to the application under

investigation (already installed in our test bed device), by

submitting our own created credentials (i.e., username and/or

password). After using the application for an arbitrary time

period, which varies from 2 to 10min, we carry out the specific

actions, described in each considered scenario. Then, we

dump the device’s volatile memory, using the procedure

described in Section 3. Finally, we search for the submitted

credentials and nearby patterns, by employing another open-

source forensics tool called The Sleuth Kit (TSK) (http://

www.sleuthkit.org/sleuthkit/index.php). TSK is used to

perform forensic investigations and data extraction from im-

ages of Windows, Linux and Unix computers. It includes

various utilities to find metadata entries, display data blocks

within a file system, and search for allocated and unallocated

file names within a file system.
5. Results

In the first set of experiments, we successfully recovered our

own submitted credentials in themajority of the applications,

since theywere in plaintext, without almost anymodification.

In some cases, the characters of the retrieved credentials

http://dx.doi.org/10.1016/j.cose.2014.01.004
http://dx.doi.org/10.1016/j.cose.2014.01.004

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 6 6e7 672
within the memory images were separated by the dot symbol.

For example, in case that the submitted password of an

application was the phrase “password”, then we located in the

memory image the phrase “p.a.s.s.w.o.r.d.”. The reason of this

trivial modification was due to the employed Unicode

encoding (i.e., UTF-16). We also observed in one application

that the characters of the password string were HTML enco-

ded. For example, in case that the password of the application

was the string “p@ssword!”, then we found out in the memory

image the string “p%40ssword%21”. In the following Fig. 2, a

memory snapshot using the TSK open-source forensic tool is

presented, which includes the discovered password string

“.d.s.s.e.c.” in clear text, where its characters are separated by

the dot symbol.

The following Fig. 3 presents all the findings and summa-

rizes the results of the first set of experiments (i.e., recovery of

the own submitted credentials) for each investigated appli-

cation (also grouped in categories) and studied scenario. In

this figure, the cells that include the letters U and P indicate

the successful recovery of the username and password,

respectively, for the specific application and the considered

scenario. Moreover, the gray colored cells that contain the

letter X signify the unsuccessful recovery of a username or

password. Finally, the cells that comprise the dash symbol

denote that the related applications do not use a username

(i.e., they only employ a password).

The analysis of the numerical findings in Fig. 3 reveals

some interesting observations regarding both the privacy level

that the examined application support as well as the behavior

of the volatile memory of Android mobile devices, under

different usage conditions. More specifically, by studying the

results per experimentation scenario, we may deduce that in

scenarios 1 and 4 we were able to discover the majority of the
Fig. 2 e A snapshot of a memory dump presenting the discovere

indicates the exact password location.
submitted authentication credentials (i.e., 80 percent in both

of them). This can be attributed by the fact that in both sce-

narios, the mobile device was idle before performing the

memory dump, which leads to the observation1.

Observation1: As long as the user does not employ the mobile

device (i.e., powered on and idle), it is more likely the authenti-

cation credentials (i.e., data in motion) to remain intact in the

volatile memory of the device.

On the other hand, in scenarios 10 and 11 the authentica-

tion credentials had always been erased from the volatile

memory and we couldn’t find any of them (i.e., 0 percent in

both of them), driving to the observation2.

Observation2: The best way to ensure that the volatile memory

of a mobile device does not contain any authentication credential

(or other sensitive data) is either to reboot the device or remove its

battery. This has been also proved for desktop/laptop computers

(Karayianni et al., 2012). However, there is a fundamental

difference in the usage of mobile devices and desktop/laptop

computers that makes this observation very critical. That is,

users of desktop/laptop computers reboot or shut them down in a

daily basis. On the other hand, the users of mobile devices, rarely,

close or reboot them. In fact, mobile users try to avoid closing or

rebooting their devices, as much as possible, in order not to miss

any phone call. Therefore, we can deduce that it is more likely a

malicious to discover authentication credentials in the volatile

memory of mobile devices than desktop/laptop computers.

An interesting observation (i.e., observation3) that derives

from all the scenarios with time variation (e.g., scenario 1, 2, 3,

4, 5, 6, 8, 9) has to do with the fact that the longer we waited to
d password “dssec” as well as the pattern “password:” that

http://dx.doi.org/10.1016/j.cose.2014.01.004
http://dx.doi.org/10.1016/j.cose.2014.01.004

Fig. 3 e Results of the first set of experiments (i.e., recovery of the own submitted credentials) for each investigated

application, grouped in categories, and studied scenario.

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 6 6e7 6 73

http://dx.doi.org/10.1016/j.cose.2014.01.004
http://dx.doi.org/10.1016/j.cose.2014.01.004

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 6 6e7 674
dump the memory image, the less authentication credentials

were discovered in it.

Observation3: Time is with security. The more time passes from

the moment a user submitted his/her authentication credentials,

the more likely is the authentication credential to be deleted.

In scenarios 4, 5 and 6, where the examined applications

were set up to the background (i.e., instead of logging out

properly), we were able to discover the authentication creden-

tials in a percentage of 80%, 74% and 72%, respectively. More-

over, in scenario 7 we were able to discover the authentication

credentials in a percentage of 72%, despite the fact that the

investigated applications were ended using a task killer appli-

cation. From these facts we derive the following observations:

Observation4: Setting up a running application into the back-

ground does not delete the authentications credentials from the

volatile memory of the mobile device. This is an alarming result,

since it is a common practice among users to set up the running

applications into the background, instead of logging out properly.

Observation5: Using a task killer application to end a running

application does not wipe out the related authentication creden-

tials from the volatile memory.

By comparing the results in scenarios 2 and 3, we notice

that in the first onewewere able to find out the authentication

credentials in a percentage of 77%; while in the second, only,

in 48%. Based on this we may infer the observation6:

Observation6: Using a mobile device as a smart phone (i.e.,

activating various Android applications), it is more likely to erase

the authentication credentials that reside in the device’s volatile

memory, than using it as mobile phone (i.e., make/receive calls

and send/receive SMS). This happens because a running Android

application overwrites, previously, stored data in the device’s

volatile memory. On the other hand, actions such as phone calls

or sending/receiving SMS, do not engage the volatile memory of

the mobile device, and, therefore, the contents of this memory are

preserved.

In scenarios 8 and 9 (i.e., switch the device to the airplane

mode), we were able to discover the authentication creden-

tials in a percentage of 58% and 16%, respectively. This sig-

nificant difference, between these two scenarios, can be

attributed by the fact that in scenario 9, after switching the

device to the airplane mode, we launched and played a game

application; while in scenario 8 the device stayed idle.

Consequently, we may reason the following observation7.

Observation7: Switching themobile device to the airplanemode,

the contents of the devices volatile memory are not necessarily

erased, and, thus, authentication credentials can be recovered.

However, in cases that after switching, the mobile user activates

and runs an application such as a game, we notice that the ma-

jority of the authentications credentials, which reside at the vol-

atile memory of the device, are erased.

From the applications’ point of view, we perceive that for

the entire set of the tested applications, we were able to find
out the authentication credentials, at least once. In particular,

in the category of m-banking and financial/e-shopping appli-

cations, we discovered the submitted authentication creden-

tials in a percentage of 65% and 51%, respectively. Similarly, in

the group of passwordmanagers as well as the applications of

encryption/hiding, the recovered credentials have reached the

percentage of 45% and 71%, respectively. Based on these

findings, we may deduce the following observations:

Observation8: The majority of the examined Android applica-

tions are vulnerable to the recovery of authentication credentials

from the volatile memory.

Observation9: It is alarming that even applications that should

take security as a first priority, such as m-banking applications,

have been proved to be vulnerable to the discovery of authenti-

cation credentials.

From the m-banking applications, the most vulnerable was

the application of bank5, since we recovered the authentica-

tion credentials in almost all scenarios (i.e., except for sce-

narios 10 and 11). On the other hand, the most secure

application was this of bank6, in which we discovered the

authentication credentials only in scenario 4.a (i.e., set the

running application to the background and, immediately,

dump the volatile memory of the device). In the financial/e-

shopping applications, the percentage of recovery of the sub-

mitted usernames was higher than this of passwords. The

password managers were also vulnerable to the discovery of

authentication credentials, but this happenedmore frequently

in the application of password2, than in password1. Finally,

the application of encryption1 has been proved more robust

than the application encryption2, which was vulnerable to

almost all the studied scenarios, except for scenarios 10 and

11. These findings lead to the following observations.

Observation10: We found out that there are some Android ap-

plications that are secure under the threat of discovery of

authentication credentials (e.g., bank6 application); while there

are some other that are, completely, exposed (e.g., encryption2

and bank5 applications). This contradictory results show that

some applications have been developed taking into account se-

curity precaution, whilst some other not.

Observation11: Regardless of the criticality of the considered

applications, all developers should use correct and secure pro-

gramming techniques (i.e., delete the authentication credentials

when they are not used from the applications), in order to

enhance the level of security provided by mobile platforms.

Observation12: Password managers that aim to enhance the

privacy of users, by protecting their passwords, were found to be

vulnerable. This means that if a user loses his/her device, a

malicious may discover all the user’s passwords, only by

discovering the master password of the employed password

manager application.

In the second set of experiments, we determined specific

patterns and expressions that indicate the location of the

credentials (i.e., username and password) within the captured

memory images, for the entire set of the examined applica-

tions. For example, as shown in Fig. 2, right before the sub-

mitted password (i.e., dssec), we meet the string “password:”,

http://dx.doi.org/10.1016/j.cose.2014.01.004
http://dx.doi.org/10.1016/j.cose.2014.01.004

Table 2 e Discovered Patterns for
usernames and passwords.

Username Password

j_username¼ j_password¼
username¼ password¼
userid> password:

login i:type¼ pass i:type:

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 6 6e7 6 75
evidently, indicating that the following string is the user’s

password. Some other patterns that we found out for pass-

words (in the considered applications) are “password¼”,

“j_password¼”, and “pass i:type” (see Table 2). Therefore, the

expression “password” or the excerpt “pass” indicate the

physical location, where the submitted passwords are stored,

in clear text, for the entire set of the examined applications.

Similarly, the discovered expressions for the location of the

submitted usernames in the captured memory images are:

“j_username¼”, “username¼”, “userid>”, and “login i:type¼” (see

Table 2). Hence, the patterns username, userid or login signify

the location where the usernames are stored in the captured

memory images. A forensic investigator (or a malicious) can

simply dump the volatile memory of an Android device and

search for these patterns to discover the usernames and pass-

words of the owner of the device. The identification of such

expressions and patterns infers the last observation13.

Observation 13: We proved the existence of patterns and ex-

pressions that pinpoint where the authentication credentials of

each application are, exactly, located in a memory dump.

Therefore, a malicious may, easily, recover the authentication

credentials from a stolen device, simply, by searching in the

memory dump for these patterns or expressions. In contrast, the

involved developers should avoid using such patterns or ex-

pressions in the provided mobile applications.
6. Conclusions

In this paper, we investigated and evaluated the privacy of

Android mobile applications. In particular, we examined

whether authentication credentials in the volatile memory of

Android mobile devices can be discovered, using open-source

forensics tools. The analysis of the results revealed that the

majority of the considered Android applications are vulner-

able to the recovery of authentication credentials from the

volatile memory. It is alarming that even applications that

should take security as a first priority, such as m-banking

applications, have been proved to be vulnerable. Moreover, we

observed that the volatile memory did not contain any

authentication credential only when we rebooted the device

or removed its battery. We also proved the existence of pat-

terns and expressions that pinpoint where the authentication

credentials of application are, exactly, located in a memory

dump. Finally, taking into account that users tend to reuse

password across various websites and applications, we drew

the conclusion that regardless of the criticality of the appli-

cations, all developers should use correct and secure pro-

gramming techniques and guidelines (i.e., delete the

authentication credentials when they are not used from the
applications), in order to hinder the authentication credential

discovery and enhance the level of privacy, provided by mo-

bile platforms.
r e f e r e n c e s

Abbott D. Linux for embedded and real-time applications. 3rd ed.
December 2012 [chapter 7].

Apostolopoulos D, Marinakis G, Ntantogian C, Xenakis C.
Discovering authentication credentials in volatile memory of
Android mobile devices. In: the 12th IFIP conference on e-
business, e-services, e-society (I3E 2013), Athens, Greece; April
2013.

Bornstein D. Dalvik VM internals. In: Google I/O developer
conference; June 2008.

Case A. Memory analysis of the Dalvik (Android) virtual machine.
Seattle: SOURCE; Dec. 2011.

Consumer Survey. Password habits; September 2012.
Girault E. Volatilitux: physical memory analysis of Linux systems;

Dec. 2010.
Hoog A. Android forensics: investigation, analysis, and mobile

security for Google Android. Syngress, Elsevier; June 2011.
http://blog.flurry.com/bid/88867/iOS-and-Android-Adoption-

Explodes-Internationally [accessed on May 2013].
http://code.google.com/p/lime-forensics [retrieved on Nov. 2012].
http://developer.Android.com/tools/debugging/ddms.html

[accessed on Nov. 2012].
http://developer.android.com/tools/help/adb.html [accessed on

Nov. 2012].
http://developer.android.com/about/dashboards/index.html

[accessed on 01.05.13].
http://mobworld.wordpress.com/2010/07/05/memory-

management-in-Android/ [accessed on Nov. 2012].
http://thomascannon.net/projects/android-reversing [accessed

on Oct. 2013].
http://www.forensicswiki.org/wiki/dd [accessed on Oct. 2013].
http://www.sleuthkit.org/sleuthkit/index.php [accessed on Oct.

2013].
IDC worldwide quarterly mobile phone tracker; May 2013.
Karayianni S, Katos V, Georgiadis CK. A framework for password

harvesting from volatile memory. Int J Electron Secur Digit
Forensics 2012;4(2e3):154e63.

Kramer S. http://c-skills.blogspot.com/2010/08/droid2.html
[accessed on Oct. 2013].

Müller T, Spreitzenbarth M. Frost forensic recovery of scrambled
telephones. In: 11th International conference on applied
cryptography and network security (ACNS 2013), Alberta,
Canada; June 2013.

Mylonas A, Kastania A, Gritzalis D. Delegate the smartphone
user? Security awareness in the smartphone platforms.
Comput Secur May 2013;34(1):47e66. Elsevier Science.

Mylonas A, Theoharidou M, Gritzalis D. Assessing privacy risks in
Android: a user-centric approach. In: Proceedings of the 1st
international workshop on risk assessment and risk-driven
testing (RISK-2013). Turkey: Springer; November 2013.

Ponemon Institute LLC. The lost smartphone problem:
benchmark study of U.S. organizations. Ponemon Institute
research report, sponsored by McAfee; Oct. 2011.

Sylve J, Case A, Marziale L, Richard GG. Acquisition and analysis
of volatile memory from android device. Digit Investig Feb
2012;8(3e4):175e84. Elsevier.

Thing V, Ng K-Y, Chang E-C. Live memory forensics of mobile
phones. In: 10th Annual conference of digital forensic
research workshop (DFRW); 2010.

Wright S. The Symantec smartphone honey stick project.
Symantec Corporation; Mar. 2012.

http://refhub.elsevier.com/S0167-4048(14)00015-7/sref1
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref1
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref2
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref2
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref2
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref2
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref2
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref3
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref3
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref5
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref5
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref6
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref7
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref7
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref8
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref8
http://blog.flurry.com/bid/88867/iOS-and-Android-Adoption-Explodes-Internationally
http://blog.flurry.com/bid/88867/iOS-and-Android-Adoption-Explodes-Internationally
http://code.google.com/p/lime-forensics
http://developer.Android.com/tools/debugging/ddms.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/about/dashboards/index.html
http://mobworld.wordpress.com/2010/07/05/memory-management-in-Android/
http://mobworld.wordpress.com/2010/07/05/memory-management-in-Android/
http://thomascannon.net/projects/android-reversing
http://www.forensicswiki.org/wiki/dd
http://www.sleuthkit.org/sleuthkit/index.php
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref4
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref9
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref9
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref9
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref9
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref9
http://c-skills.blogspot.com/2010/08/droid2.html
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref10
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref10
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref10
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref10
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref11
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref11
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref11
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref11
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref12
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref12
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref12
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref12
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref13
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref13
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref13
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref14
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref14
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref14
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref14
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref14
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref15
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref15
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref15
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref16
http://refhub.elsevier.com/S0167-4048(14)00015-7/sref16
http://dx.doi.org/10.1016/j.cose.2014.01.004
http://dx.doi.org/10.1016/j.cose.2014.01.004

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 6 6e7 676
Dr. Christoforos Ntantogian received his B.Sc. degree in Com-
puter Science and Telecommunications in 2004 and his M.Sc.
degree in Computer Systems Technology in 2006 both from the
Department of Informatics and Telecommunications, Univer-
sity of Athens. In 2009 he received his Ph.D. from the University
of Athens (Department of Informatics and Telecommunica-
tions). Currently, he is a research associate at the Department of
Digital Systems of the University of Piraeus. His research in-
terests are software security, digital forensics and data
analytics.
Dimitris Apostolopoulos is a graduate of Computer and Commu-
nication Engineering department, University of Thessaly and an
M.Sc. degree in Digital Systems Security from University of
Piraeus. Currently, he develops Information Security Policies,
Standards and Procedures based on ISO 27001 and other legal and
regulatory requirements.
Giannis Marinakis has received his B.Sc. degree in Electronics,
Computers, and Telecommunications from the department of
Physics in the National and Kapodistrian University of Athens and
an M.Sc. degree in Digital Systems Security from the University of
Piraeus. Currently, he works as software engineer designing,
developing, and maintaining HR software.

Dr. Christos Xenakis received his B.Sc. degree in computer science
in 1993 and his M.Sc. degree in telecommunication and computer
networks in 1996, both from the Department of Informatics and
Telecommunications, University of Athens, Greece. In 2004 he
received his Ph.D. from the same Department. From 1996 to 2007
he was a member of the Communication Networks Laboratory of
the University of Athens. Since 2007 he is a faculty member of the
Department of Digital Systems of the University of Piraeus,
Greece, where currently is an Assistant Professor and member of
the System Security Laboratory.

http://dx.doi.org/10.1016/j.cose.2014.01.004
http://dx.doi.org/10.1016/j.cose.2014.01.004

	Evaluating the privacy of Android mobile applications under forensic analysis
	1 Introduction
	2 Background
	2.1 Android operating system
	2.2 Related work

	3 Volatile memory acquisition procedure
	4 Experiments
	5 Results
	6 Conclusions
	References

