Digital Investigation 10 (2013) S12-S20

journal homepage: www.elsevier.com/locate/diin

Contents lists available at SciVerse ScienceDirect Digital
In i

Digital Investigation

Android forensics: Automated data collection and reporting @CmssMark

from a mobile device

b, x

Justin Grover®

2The MITRE Corporation, 7515 Colshire Dr., McLean, VA, United States
b Rochester Institute of Technology, 1 Lomb Memorial Dr., Rochester, NY, United States

ABSTRACT

Keywords:

Android

Mobile device

Enterprise user monitoring
Insider threat

Internal investigation

In this research, a prototype enterprise monitoring system for Android smartphones was
developed to continuously collect many data sets of interest to incident responders, se-
curity auditors, proactive security monitors, and forensic investigators. Many of the data
sets covered were not found in other available enterprise monitoring tools. The prototype
system neither requires root privileges nor the exploiting of the Android architecture for
proper operation, thereby increasing interoperability among Android devices and avoiding
a spyware classification for the system. An anti-forensics analysis on the system was
performed to identify and further strengthen areas vulnerable to tampering. The contri-
butions of this research include the release of the first open-source Android enterprise
monitoring solution of its kind, a comprehensive guide of data sets available for collection
without elevated privileges, and the introduction of a novel design strategy implementing
various Android application components useful for monitoring on the Android platform.

© 2013 The MITRE Corporation. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the United States (U.S.), 121.3 million people—roughly
one third of the population—owned a smartphone as of
October 2012 (comScore, 2012; USA Census Bureau, 2010).
The major players in the smartphone market included
Google, Apple, Research In Motion (RIM), and Microsoft.
Google’s Android platform showed significant gains, up to
53.6% of the market, while RIM continued its decline to 7.8%
(comScore, 2012). As Google’s prevalence in the smartphone
market grows, so will the pressure for organizations to move
from existing mobile options to Android. These organizations
include U.S. government agencies, some of which are
considering transitioning from RIM to new smartphone
systems (Marks, 2012; Rauf, 2012). Some organizations have
begun offering personnel the ability to use personal devices
(including Android smartphones) on corporate networks

* The MITRE Corporation, 7515 Colshire Dr., McLean, VA, United States.
E-mail address: jgrover@mitre.org.

under Bring Your Own Device (BYOD) policies (Citrix, 2011).
BYOD is forecasted to spawn a $181.39 billion industry by
2017 (MarketsandMarkets, 2012).

Given the mobile device trends in government and in-
dustry, the challenge of securing smartphones on an en-
terprise has emerged. Most vendors do not design
smartphones primarily for businesses but instead for con-
sumers who will utilize their phones as personal devices.
RIM is an exception, as corporate customers can deploy a
BlackBerry Enterprise Server for device management. Un-
like RIM, Android device vendors do not ship with built-in
mobile device management (MDM) systems. Third-party
MDM is a quickly evolving vendor space that addresses
the security gaps left by the smartphone industry. Within
the next five years, 65% of all enterprises are expected to
adopt an MDM system (Pettey, 2012). BYOD increases the
need for MDM systems due to the inherent risks involved
with allowing untrusted devices on an enterprise; organi-
zations need strict enforcement of mobile device security
policies to mitigate the BYOD risks.

1742-2876/$ - see front matter © 2013 The MITRE Corporation. Published by Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.diin.2013.06.002

mailto:jgrover@mitre.org
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.diin.2013.06.002&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2013.06.002
http://dx.doi.org/10.1016/j.diin.2013.06.002

J. Grover / Digital Investigation 10 (2013) S12-520 S13

Research on several leading MDM products revealed a
general lack of features that perform automated collections
of forensic data from Android devices at the enterprise
level. The availability of this data would aid common se-
curity practices found within organizations including
incident response, security auditing, proactive security
monitoring, and forensic investigations. According to the
2010/2011 Computer Security Institute Computer Crime
and Security Survey, 61.5% of respondents from various
companies reported that internal audits were performed
within their organizations as a security mechanism. Addi-
tionally, 44% reported that data-loss prevention and user-
content monitoring programs were in place (Richardson,
2010). These statistics show that many organizations are
aware of insider threat enterprise risks and have taken
steps to mitigate them; however, given the lack of tech-
nology to monitor Android smartphones, many actions
performed on these devices are not audited. The lack of
monitoring options, coupled with the significant influence
this data can have on internal investigations, led to the
proposal and development of a prototype solution named
DroidWatch, which is the subject of this paper.

This paper focuses on the design and implementation of
an Android application (“app”) that automates the collec-
tion of useful data for internal investigations, including
policy violations, intellectual property theft, misuse, em-
bezzlement, sabotage, and espionage. Data was collected
from a Samsung Galaxy S II Epic 4G Touch Android smart-
phone running Gingerbread 2.3.6. It was then sent to a
remote Ubuntu server running PHP, MySQL, Apache, and
Splunk. Capabilities such as anti-virus, root detection, and
protections against the app’s termination or uninstallation
are necessary for system and enterprise security, but are out
of scope for this research. All data collected by the imple-
mented app will occur with user consent by means of a
banner (“user consent banner”) similar to those commonly
found on corporate or government networks. Data will not
be obtained with root privileges or exploitation of the
Android architecture.

The remainder of this paper is organized as follows.
Section 2 describes background topics involving Android
development, security, and privacy. Related work is found
in Section 3, followed by design and implementation de-
tails of DroidWatch in Section 4. Future work and the
conclusion are presented in Sections 5 and 6, respectively.

2. Background

The following subsections discuss basic app develop-
ment terminology (Section 2.1), the Android app security
model (Section 2.2), implications of rooting a device (Section
2.3), handling of mobile devices in current investigations
(Section 2.4), and privacy concerns (Section 2.5).

2.1. Android app development terminology

Android app components are building blocks from the
Android framework that help define the behavior of an
application (Google. (n.d.). Application fundamentals). The
following app components are implemented within Droid-
Watch: activities, services, content providers, broadcast

receivers, content observers, and alarms. Each component,
described below, serves a distinct and useful purpose.

Activities are individual screens that implement a user
interface. They display information, prompt user interac-
tion, and start other activities within apps (Google. (n.d.).
Application fundamentals). In DroidWatch, activities are
rarely used; most of the work happens in the background
so as to not impact the overall user experience.

Services are long-running background operations re-
quiring no user interaction. Other app components, such as
activities, can launch services and have them persist even
when other apps and services are running (Google. (n.d.).
Application fundamentals). DroidWatch relies on a service
that constantly runs to spawn data collections and
transfers.

Content providers are app components that manage the
access and sharing of application data. Apps interface with
content providers through predefined uniform resource
identifiers (URIs) (Google. (n.d.). Application fundamentals).
DroidWatch uses content providers in two ways: (1) reading
data stored within other apps; and (2) reading and writing
data stored within the DroidWatch app.

Broadcast receivers are app components that handle
and respond to broadcast system events on an Android
device (Google. (n.d.). Application fundamentals). They are
implemented into DroidWatch to detect events such as
incoming Short Message Service (SMS) messages and app
installs.

Content observers are components that, when associ-
ated with content providers, receive notifications when a
targeted data set’s underlying database content is modified
(Google. (n.d.). ContentObserver). DroidWatch uses these
to detect real-time changes to data.

Alarms are scheduled operations, similar to cron jobs,
configured in DroidWatch to periodically query content
providers and pull in new data. They are reliable, but only
run at designated times.

2.2. Android app security

Google’s security model for Android apps involves the
declaration of permissions within an app’s androidMa-
nifest.xml file (further referred to as “AndroidMani-
fest”). By default, an app with no requested permissions
cannot “perform any operations that would adversely
impact other applications, the operating system, or the
user” (Google. (n.d.). Permissions). This means that an app
cannot access the private data of other apps, use network
services, write to the internal/external memory, or perform
other basic functions. A newly downloaded app must pre-
sent its declared permissions to the user for acceptance
prior to installation.

2.3. Rooting

Rooting enables users to perform higher privileged
functions on a device than are ordinarily possible under
regular user mode. It can be used for legitimate or illegiti-
mate purposes. Users may want to circumvent security
restrictions or tamper with data collected through an app
like DroidWatch. Root access can also be used legitimately

S14 J. Grover / Digital Investigation 10 (2013) S12-520

by forensic investigators to extract data from a device;
however, it should be avoided whenever possible. The
process typically exploits a security flaw in a specific device
or operating system and may lead to further security vul-
nerabilities. Rooting also alters portions of a device (an
action contradictory to forensic practices); nonetheless,
rooting may be unavoidable depending on the circum-
stances and types of data needed (Vidas et al., 2011). While
root access may increase the number of features for an app
like DroidWatch, the consequences can undermine the
system’s security, decrease interoperability, and put the
smartphone provider’s warranty at risk.

2.4. Smartphone investigations

Law enforcement and government agencies are the
primary players in mobile security, as they are authorized
to investigate crimes and secure sensitive government in-
formation. Corporations are also very interested in mobile
security to protect themselves from commercial espionage,
financial theft, and intellectual property theft. Private in-
terests involving divorce settlements, custody battles, es-
tate disputes, etc. also gain from advances in the field
(Hoog, 2011).

Consequently, the types of investigations that would
benefit from the monitoring of smartphones are law en-
forcement investigations, internal investigations, and
private investigations. This research focuses on internal in-
vestigations performed by personnel, contracted or other-
wise, within an organization (e.g., incident responders,
security auditors, etc.) to investigate potential policy viola-
tions, intellectual property theft, misuse, embezzlement,
sabotage, espionage, and other inquiries or allegations. In-
ternal investigators are not required to conform to the strict
forensic acquisition and preservation procedures of law
enforcement investigations but typically try to adhere to
commonly practiced forensic techniques and rules.

To obtain valuable smartphone data for internal in-
vestigations, physical access to a device has traditionally
been required. An exception to this is EnCase Enterprise,
which as of October 2012, performs remote forensic imaging
of Android devices over a network. Some MDMs can also
perform limited monitoring (specific products are covered
in Section 3.1), but not enough to effectively address the
needs of investigators. Assuming that a mobile device is
physically retrieved, investigators can use a variety of tools
to take logical or physical snapshots of a device’s current
state. Andrew Hoog, in (Hoog, 2011), lists many of the tools
available to capture information from Android smart-
phones. Some of the tools are handheld hardware devices
and others are software products; however, all work
through a universal serial bus (USB) connection and require
physical access to the smartphone to function. In addition,
many of the tools require root access (Valle, 2013).

2.5. Privacy concerns

DroidWatch displays a user consent banner during a
phone’s boot process to inform users of privacy expecta-
tions and to garner their consent (more details on the
consent banner’s implementation can be found in Section

4.1.2). This helps the app avoid a spyware classification and
may deter system misuse.

Table 1 lists several applicable mobile device privacy
cases. The acceptable use of consent banners to inform users
of monitoring policies in DroidWatch can be derived from
the U.S. Court of Appeals ruling in U.S. v. Ziegler (US Court of
Appeals, 2007). Arguments for potential BYOD implications
can be made from the ruling in the City of Ontario v. Quon U.S.
Supreme Court case (US Supreme Court, 2010). As a result,
an organization may feel it has the right to install moni-
toring apps like DroidWatch on all enterprise smartphones,
including those that are personally owned, since the phones
are operating on their privately-controlled network. The
Carrier IQ case, although still pending as of the time of this
writing, serves as example of the legal troubles that can
come from monitoring user data on a smartphone without
user consent (Davis, 2012).

3. Related work

The following subsections discuss several efforts that
complement or have otherwise influenced this research.
Commercial products and academic efforts are discussed in
Sections 3.1 and 3.2, respectively.

3.1. Commercial products

Third-party MDM products increase the overall security
of an enterprise with mobile devices; however, most MDMs
do not include in-depth user monitoring capabilities. Some
leading MDM offerings, such as Zenprise, AirWatch, and
Mobilelron, offer limited monitoring capabilities (e.g., GPS
tracking and SMS monitoring), but fail to collect other
available data sets that are helpful to internal investigations.
Of the researched MDM products, Juniper’s Junos Pulse
Mobile Security Suite (v.3.0R3) offered the most user
monitoring capabilities and was evaluated as part of this
research. Findings showed that the product collected
roughly 50% of the data sets covered in DroidWatch; how-
ever, the data must be stored and hosted by Juniper-
controlled systems. This may preclude an organization’s
requirement to store its audit data internally.

Other commercially available products, such as personal
“spy” apps (e.g., Mobistealth, StealthGenie, FlexiSpy, and
Mobile Spy), collect many of the same data sets as Droid-
Watch, but have limiting factors such as requirements for
elevated privileges and a lack of enterprise storage and anal-
ysis capabilities. They are also often classified as spyware
because they collect personal information without knowl-
edge of the user (Juniper Networks, 2012).

Table 1
Mobile device privacy cases.

Case Ruling
U.S. v Ziegler (2007)

An organization has the right to monitor
its own equipment if its users are aware

of the policy.
City of Ontario v. Quon Audits can be performed on a
(2010) company-provided device even if incurred

surcharges are paid by an employee.

Carrier IQ N/A (Pending)

J. Grover / Digital Investigation 10 (2013) S12-520 S15

Remote enterprise forensic collection tools also seek to
increase enterprise security. Google Rapid Response (GRR)
allows forensic investigators and incident responders to
forensically acquire evidence from a large number of ma-
chines over a network (Cohen et al.,, 2011). Commercial
solutions similar to GRR are EnCase Enterprise, AccessData
Enterprise, F-Response Enterprise Edition, and Mandiant
Intelligent Response. EnCase Enterprise supports Android,
while the others currently do not. The aforementioned
remote forensic tools differ from DroidWatch because they
do not continuously collect and store data. Instead, they
take one-time snapshots of data when instructed by an
operator. DroidWatch code could be used to extend the
capabilities of these tools.

3.2. Academic research

Several scholarly efforts have shaped this research
effort. One system, proposed by Lee et al., uses an Android
app located on a Secure Digital Card (SDCard) to extract
data quickly from a smartphone onto the same SDCard
using the Android Application Programming Interface (API)
(Lee et al., 2009). This logical approach to collecting data is
similar to DroidWatch, except their system does not
monitor a device continuously. The work does, however,
highlight various data sets that can be obtained without
root privileges. AFLogical, released as an open-source
product by viaForensics, takes a similar approach. It also
uses a specialized SDCard and expands on the number of
retrieved data sets (Hoog, 2010). Follow-on work by Yang
et al. proposed the substitution of cloud computing for
SDCards; however, their research also requires physical
access to a device and does not collect data continuously
(Yang and Lai, 2012).

Related work by Villan et al. described a native Android
app that performs real-time monitoring, similar to virtual
network computing (VNC), on a smartphone without the
use of root privileges (Villan and Esteve, 2011). The research
involved streaming a user’s screen to a remote location for
usability purposes (i.e., for use at corporate help desks), but
this ability to watch a user’s screen could be implemented
as a future feature in DroidWatch.

Research presented by Shields et al. introduced a
forensic acquisition and monitoring system named Proac-
tive Object Fingerprinting and Storage (PROOFS), the first
system to perform true forensic acquisitions over a network
in a continuous, proactive manner using a novel object
fingerprinting approach (Shields et al, 2011). While
PROOFS does not operate on Android smartphones, it does
highlight the criteria requirements for a monitoring tool to
be considered forensically sound. Future work on Droid-
Watch includes the incorporation of some of these criteria.

Previous anti-forensics work on the Android platform
was instrumental in evaluating how DroidWatch could be
compromised or thwarted. Several general anti-forensic
concepts were ported to Android by Distefano et al. and
served as a guide during an anti-forensic assessment of the
DroidWatch app (Section 4.3) (Distefano et al., 2010).
Research by Azadegan et al. presented an additional anti-
forensics concept and was also included in the aforemen-
tioned DroidWatch assessment (Azadegan et al., 2012).

4. DroidWatch

DroidWatch is an automated system prototype com-
posed of an Android application and an enterprise server.
After obtaining user consent, DroidWatch continuously
collects, stores, and transfers forensically valuable Android
data to a remote Web server without root privileges. The
following subsections discuss design and implementation
details, analysis and evaluation results, and potential anti-
forensic opportunities in the app.

4.1. Design and implementation

4.1.1. System architecture

DroidWatch'’s system architecture is described in Fig. 1.
Each descending layer represents a higher level of
abstraction. Various collection, storage, and transfer com-
ponents are handled by a service that facilitates actions
within the app and the remote enterprise server. The in-
dividual components labeled within the diagram are
explained throughout the design subsections.

4.1.2. User consent to monitoring

The DroidWatch app is dependent upon a user consent
banner that appears when the app is started during the
phone’s boot process or launched manually through the
Android app menu. Upon acceptance of its terms and
conditions, which are configurable prior to the app’s
installation in the strings.xml file, a long-running ser-
vice is launched to perform data collection, storage, and
transfers. The option to reject the user consent terms is also
presented for the purposes of this research, although or-
ganizations may wish to omit this option in real de-
ployments. Rejecting or closing the user consent banner
causes the DroidWatch service not to run. The banner is
implemented using an activity that is registered in the
AndroidManifest to receive the BOOT_COMPLETED broad-
cast to ensure its display during the boot process.

4.1.3. Design strategy

To simplify the development process of an app that
performs monitoring through continuous or periodic data
collections, a general design strategy for prioritizing the
three app components useful for monitoring was created.
The strategy was applied throughout the development of
DroidWatch, as presented below in Fig. 2.

Direct
Data
Access

Internal Network
SQlLite Transfer

Content | Broadcast
Observers | Receivers

Android Service

Enterprise
Server

Java Application

Fig. 1. DroidWatch system architecture.

S16 J. Grover / Digital Investigation 10 (2013) S12-520

Broadcast Receiver = Content Observer = Alarm

Fig. 2. Design strategy.

The strategy is based on the relative ease of imple-
mentation, ability to handle real-time notifications, and
proneness to false positive and duplication issues. First,
data sets should be analyzed to determine if they generate
system broadcasts. If they do, broadcast receivers should be
considered as the app component for collections. If
broadcasts are not available, consider content observers for
implementation. Alarms should be used if broadcasts and
content observers are unavailable or ineffective for the
targeted data collections.

4.1.4. Local storage

All collected data is stored temporarily in a local SQLite
database on the phone and is configured to be accessible to
the DroidWatch app only. Standard Structured Query Lan-
guage (SQL) database functions are handled by a custom
DroidWatch content provider. This allows each DroidWatch
collection to perform in a thread-safe and structured
manner.

A scheduled alarm periodically transfers the local SQLite
database file over hypertext transfer protocol secure
(HTTPS) POST to the enterprise server for processing. The
transfer process is designed to run in the background with
minimal impact to a user’s experience, helped by the
relatively small size of the database file (average of 75
kilobytes).

4.1.5. Enterprise server

The enterprise server prototype, to which the collected
data flows, is an Ubuntu virtual machine on a local, private
network running Apache, PHP, MySQL, and Splunk. Apache
was configured with a self-signed secure socket layer (SSL)
certificate and included as an asset file within the Droid-
Watch app. This allows data to be transferred over an
HTTPS connection. PHP code handles the SQLite file up-
loads and extracts events into a MySQL database. Splunk
periodically pulls data from the MySQL database and makes
the events available in its interface for analysis and
reporting.

4.1.6. Data process flow

The data process flow within the DroidWatch app is
depicted in Fig. 3. Data collection is a continuous process,
while transfers are attempted every 2 h (this value is con-
figurable). Upon a successful transfer to the enterprise
server, events dated prior to the transfer are wiped from
the local phone database, which minimizes the size of that
database. File transfers that fail are logged and do not result
in the wiping of any events.

4.1.7. Data sets

Table 2 lists the data sets collected by DroidWatch.
These data sets were chosen based on available content
providers, needs for internal investigations, and the level of
accessibility (i.e., no root required). Each data set can be
configured through droidwatch.properties, an asset

>

: Local
Forensic) Clear Local
’ SQlLite — — .
[Collect:on] Storage } HITES Transfer SQLite DB

Fig. 3. Data process flow diagram.

file included within the app’s source code that allows for
the adjustment of collection intervals (i.e., how long the
system waits between collections). Organizations can
choose to omit the collection of a data set by setting its
corresponding interval value to zero. Fifteen unique data
sets could be accessed; two data sets—emails and account
passwords—were explored, but not used (as explained
below).

Mechanisms to access the email app are not part of the
standard Android Software Development Kit (SDK)
(CommonsWare, 2010). Furthermore, the email app is res-
tricted by a signatureOrSystem permission, which pro-
hibits third-party apps from accessing its private data
(Android Open Source Project, 2008). Account passwords are
protected by similar protections; the calling app must
declare the AUTHENTICATE_ACCOUNTS permission in the
AndroidManifest and have its user ID match that of the
requested account (Google. (n.d.). AccountManager).

Some data sets used multiple app components to
perform collections. For example, Multimedia Message
Service (MMS) messages are detected using a broadcast
receiver and an alarm; the component used depends on the
message direction.

4.2. Analysis and evaluation

This section describes the results of DroidWatch
experimentation and applies its capabilities to situations
where they can aid internal investigations. The scripted

Table 2
Collected data sets.

Data set App component used

Content Alarm
observer

Broadcast
receiver

App install/removal v
Browser navigation

Browser search

Calendar event

Call log

Contact list

Device account®

Device ID

GPS location

GPS location setting 7
MMS I 17
Picture gallery v

Screen lock status
SMS

Third-party app log v

X\
AN WA

X\

\
\

2 Device account information is collected directly through the Android
API upon DroidWatch service starts.

J. Grover / Digital Investigation 10 (2013) S12-520 S17

experiments were based on available data sets and the
author’s prior work experience. All results were derived
from a single device and user. Note that while Splunk was
used in this research because of its cost (free for up to 500
megabytes per day), other products can perform similar
functions.

Fig. 4 illustrates the number of logged events extracted
from Splunk over the span of a single day, broken down by
data set. The sample contained 442 logs generated by one
device and highlights the relatively small quantity of
recorded events. Log totals per day will differ based on
usage habits; a device that is more heavily used will see
increases in log totals. No negative impacts to the user
experience or increased battery consumption levels were
observed throughout the experimentation.

4.2.1. General usage trends

A search for “Screen Unlocked” in Splunk displays a
timeline of user-performed actions that indicate active
phone usage (e.g., PIN code, gesture, or password entries).
The results, which span several days, can be seen in Fig. 5.
This data can also be used to determine phone activity at a
certain time, discover masquerading users (i.e., users other
than the originally assigned user), or develop usage pat-
terns for employees.

4.2.2. Suspicious contacts and communications

Contact names or phone numbers that pose a risk to an
organization may be discovered through searches or
incorporated into Splunk triggers (available in Splunk En-
terprise). These may be numbers external to an organiza-
tion’s phonebook or previously identified known-bad
individuals.

Recorded SMS and MMS content can also be searched
for suspicious activity. An incoming SMS in DroidWatch can
serve as a third-party time source since the timestamp is
carved out of the raw SMS format. The embedded time
within the SMS structure does not rely on the phone’s clock
(Casey, 2009). Some issues encountered during the analysis
of this data were:

Mon Dec 17

12
6
IIII - I .

Sun Dec 16
2012

Fig. 5. Detected screen unlock actions (Splunk).

e Messages sent to multiple contacts only listed a single
recipient in the logs.

e Timezones were missing from incoming SMS.

e MMS message text was not available.

When a picture is taken using a phone’s camera and
immediately sent over MMS, the activity may warrant
further investigation depending on the circumstances.
Fig. 6 shows a search revealing the logs of a picture taken
on Saturday, December 22, 2012, at 3:20 p.m. that was
subsequently attached to an outgoing MMS message. If it is
found (possibly through GPS tracking) that the user was
alone in the office, more analysis may be required to
determine whether a data leakage occurred.

4.2.3. Location monitoring

Last known locations recorded by DroidWatch include
the device ID, latitude, longitude, and capture time. The
approach that DroidWatch uses to collect locations conserves
battery life, but results in the sparse logging of recorded lo-
cations. Only four locations over a seven-day period were
reported. Even though the GPS provider setting was enabled,
last known locations are not stored on a device unless the
GPS is actively used (i.e., the Google Maps app is opened to
display the current position). Furthermore, a phone’s last
known location value is cleared upon device reboots, causing
a stored set of coordinates to be lost before being recorded.

Changes made to the location provider setting are also
available for tracking. This data would be potentially useful
if the phone’s physical location data becomes more reliable.
It would allow for a device’s location to be identified when
its GPS setting is turned off manually.

350
300
250
i)
§ 200
o 150
©
+# 100
50
0 - , , , - - ,
¢ & & © S A& & ©
SH & \\\9% &g ‘—)Vo F & S ¥
& ¢ & P &R & S R
N 3 & ke o e & \s
A O & o & Ny N & (C\
<> < & RN o & 3 &
\({7 $‘_’Q/ (/’b N Q Q\ bQ
& i

Fig. 4. Events logged over 24 h.

S18 J. Grover / Digital Investigation 10 (2013) S12-520

3.20PH 330PM
SatDec 22
2012

Fig. 6. Photo and MMS search results (Splunk).

Recorded calendar events are also beneficial to in-
vestigators. Searches performed for a user’s appointments
can assist with alibi checking, surveillance planning, or
identifying travel plans.

4.2.4. Internet history

DroidWatch collects and makes available the events
performed within the built-in Android Web browser. An
Internet history event includes the action taken (e.g.,
browse or search), the search term or URL, the event time,
and the attributed device ID. This information can be used
to identify suspicious browser usage on an enterprise, such
as uploads of intellectual property to external websites.
Browser searches may also be parsed to better extrapolate a
user’s possible intentions behind the detected actions.

4.2.5. Malicious apps

An audit for installed apps may reveal that a device has
malware or other apps of concern. This would warrant
additional concerns and security measures during an inter-
nal investigation. Provided DroidWatch result fields include
the app’s name, action taken, and install/removal date.

Third-party app logs are also collected by DroidWatch.
Several filtering mechanisms limit logs to only those
generated by apps not built-in to the phone. While the
filtering was not perfect, the total quantity of collected app
logs was reduced to a more manageable average of 337 logs
per day (down from over 10,000).

4.3. Anti-forensics

The upcoming sections are anti-forensics categories
drawn from previous work conducted in the Android anti-
forensics field and are used to assess the DroidWatch app
for anti-forensic vulnerabilities. The categories are destroy-
ing evidence (Section 4.3.1), hiding evidence (Section 4.3.2),
altering evidence sources (Section 4.3.3), counterfeiting evi-
dence (Section 4.3.4), and detecting forensics tools (Section
4.3.5) (Distefano et al,, 2010; Azadegan et al., 2012).

Note that DroidWatch, in its current form, is fully sus-
ceptible to root attacks, app uninstalls, and process termi-
nations. External protections offered by MDMs, such as root
detection and the enforcement of app installation policies,
are relied upon to ensure data integrity within DroidWatch.

4.3.1. Destroying evidence

Data sets collected through broadcast receivers and
content observers are not likely susceptible to evidence
destruction methods, since a copy of each event is recorded
in DroidWatch'’s private storage as the event happens. Data
sets retrieved through alarms, however, are susceptible to
destruction tactics, since it may be possible to remove

evidence (e.g., outgoing MMS messages, third-party app
logs, calendar events, browser navigations, browser
searches, and last known GPS locations) before the next
scheduled collection.

One related concern for DroidWatch is that apps can
register for custom intent-filter priorities upon installation.
An app that uses the maximum intent-filter priority value,
231.1, has the ability to intercept and drop a broadcast
before another app receives it. DroidWatch uses the default
intent-filter priority value, due to its status as a research
prototype.

4.3.2. Hiding evidence

Data sets collected through scheduled alarms are among
those affected by data hiding tactics. A user wanting to hide
a few recent outgoing MMS messages could use manual
transfer methods to divert them from the DroidWatch
collection process.

The aforementioned ability for apps to register custom
intent-filter priorities can similarly enable apps to hide data
through the interception and rerouting of broadcasts. For
example, GoSMS, a legitimate third-party SMS app, regis-
ters for the maximum possible intent-filter priority to
divert incoming SMS messages and eliminate the duplica-
tion of system notifications (Kovacevic, 2011).

4.3.3. Altering evidence sources

Altering evidence sources, according to (Distefano et al.,
2010), involves modifying a data set to thwart a collection
process. This is another area of concern for DroidWatch.
Data collected by alarms are susceptible because the pro-
cesses rely on certain values in a data set to be present. For
example, when scanning for new outgoing messages
through the MMS content provider, the “msg_box” field
indicates the message’s direction—with “2” representing a
sent/outgoing MMS. If this field’s value is altered to “5,” the
message is ignored during the collection process.

4.3.4. Counterfeiting evidence

Counterfeiting evidence on mobile devices involves
adding fictitious data to existing data sets to confuse or
evade investigators. DroidWatch collections are vulnerable
to this, because no checks are performed to differentiate
fake entries from real ones.

Adding massive amounts of fictitious data over a short
time span may also result in a denial of service attack, another
concern for DroidWatch. Should enough data be injected into
a phone, the app may cease to function properly.

4.3.5. Detecting forensics tools

It was determined that the detection of forensics tools
research performed by (Azadegan et al., 2012) was not
directly applicable to DroidWatch. They focused on
listening for initial connection signatures of some well-
known forensics tools on Android phones. DroidWatch
performs monitoring, unlike traditional forensics tools, and
has no initial connection signatures or requirement for
physical access to a device.

The idea of detecting signatures, however, can be
applied to DroidWatch’s scheduled transfers. If the pattern
of data transfers to the enterprise server is determined, an

J. Grover / Digital Investigation 10 (2013) S12-520 S19

automated tool could disable networking on a device
before the transfer occurs, therefore causing a denial of
service on the system.

5. Future work

Future research on DroidWatch includes work on the
app and the enterprise server. The upcoming sections cover
proposed improvements to collect additional data sets
(Section 5.1) and implement anti-tampering mechanisms
(Section 5.2).

Aside from the future improvements to DroidWatch, in-
tegration of DroidWatch into an MDM solution would be
very valuable for the Android security community. Current
MDM systems lack user monitoring features that could aid
internal investigations. An overall enterprise security system
that provides a combination of solid policy enforcement,
remote device management, and comprehensive user
monitoring on Android devices would help mitigate security
concerns among the government and industry organizations
considering Android smartphone deployments.

5.1. Additional data sets

Android forensics is an evolving field that changes with
each new operating system release. As new data sets and
features become available, their value to an investigation
must be assessed for possible inclusion into a monitoring
system. Future DroidWatch incorporations include the
following data sets: USB debug settings, phone restarts,
voicemail logs, and additional app and kernel logs from
dumpsys, dumpstate, and dmesg.

5.2. Anti-tampering mechanisms

Data collected and stored on a phone currently relies on
the Android built-in security model (Section 2.2) to prevent
users and apps from tampering. Some proposed capabil-
ities to harden DroidWatch include:

Encryption of database events (with checksum)
High intent-filter priority values

Keep-alive logging

Event-based collections and transfers

Database hashing

Encrypting events in the DroidWatch database is a
mechanism to deter users from viewing or tampering with
previously collected events. Each event can be paired with a
checksum and encrypted using a public key infrastructure
(with a private key stored on the enterprise server).
Registering for maximum intent-filter priority values in the
AndroidManifest may help prevent apps from suppressing
system broadcasts, although further research is needed to
determine what happens when two apps register with the
same priority value. Periodic logging of “keep-alive” mes-
sages to the DroidWatch database would highlight service
disruptions. Tampering may be evident if gaps in time are
present between logs. Event-based triggers may provide a
more random transfer pattern and may prevent time-based

thwarting attempts against the scheduled operations;
however, further research on the effectiveness of this
capability is required. The final anti-tampering capability
listed is the hashing of transferred databases. Comparing
hash values is a solid way to discover evidence tampering,
assuming that the originating device is not compromised.

6. Conclusion

The system introduced in this research serves as a pro-
totype for the Android community to design and implement
continuous Android monitoring in enterprise environments
without root privileges. DroidWatch is the first open-source
system of its kind; however, it requires further development
to broaden and improve its capabilities. Anti-tampering
mechanisms will also need to be implemented to increase
security. As noted, the data sets collected are useful for many
types of internal investigations for a variety of reasons. This
research contributes a novel development design strategy,
which can be used to prioritize Android app components for
monitoring. Finally, this work serves as a guide for accessing
data sets available through the default Android APL

Acknowledgments

The author would like to thank his thesis committee
members (Bill Stackpole, Dr. Tae Oh, and Dr. Yin Pan), his
MITRE colleagues (notably Mark Guido), and Monica
Grover for their input and edits.

References

Android Open Source Project. Android/platform/packages/apps/Email.gitl.
https://android.googlesource.com/platform/packages/apps/Email.git/
+/android-2.3.6_r1/AndroidManifest.xml; 2008.

Azadegan S, Yu W, Sistani M, Acharya S. Novel anti-forensics approaches
for smart phones. In Hawaii International Conference on System Sci-
ences (pp. 5424-5431). Maui, HI: IEEE; 2012, January 4.

Casey E. Top 7 ways investigators catch criminals using mobile device
forensics. http://computer-forensics.sans.org/blog/2009/07/01/top-7-
ways-investigators-catch-criminals-using-mobile-device-forensics;
2009, July 1.

Citrix. IT organizations embrace bring-your-own devices. http://www.
citrix.com/site/resources/dynamic/additional/Citrix_BYO_Index_report.
pdf; 2011, July 22.

Cohen M], Bilby D, Caronni G. Distributed forensics and incident response
in the enterprise. In: Digital forensics research workshop 2011. New
Orleans, LA: Elsevier; 2011S101-10; August 2011.

CommonsWare. Access Android emails through content provider. http://
stackoverflow.com/questions/3811608/access-android-
emails-through-content-provider; 2010, September 28.

comScore, Inc. comScore reports October 2012 U.S. mobile subscriber
market share. http://www.comscore.com/Insights/Press_Releases/
2012/11/comScore_Reports_October_2012_U.S._Mobile_Subscriber_
Market_Share; 2012, November 30.

Davis W. Carrier IQ loses preliminary round in privacy lawsuit. http://www.
mediapost.com/publications/article/175096/carrier-iq-loses-preliminary-
round-in-privacy-laws.html#axzz2FMwgPlJ6; 2012, May 21.

Distefano A, Me G, Pace F. Android anti-forensics through a local para-
digm. In Digital forensics research workshop 2010 (pp. S95-S103).
Portland, OR: Elsevier; August 2010.

Google. (n.d.). Application fundamentals. http://developer.android.com/
guide/components/fundamentals.html.

Google. (n.d.). ContentObserver. http://developer.android.com/reference/
android/database/ContentObserver.html.

Google. (n.d.). Permissions. http://developer.android.com/guide/topics/
security/permissions.html.

Google. (n.d.). AccountManager. http://developer.android.com/reference/
android/accounts/AccountManager.html.

https://android.googlesource.com/platform/packages/apps/Email.git/+/android-2.3.6_r1/AndroidManifest.xml
https://android.googlesource.com/platform/packages/apps/Email.git/+/android-2.3.6_r1/AndroidManifest.xml
http://computer-forensics.sans.org/blog/2009/07/01/top-7-ways-investigators-catch-criminals-using-mobile-device-forensics
http://computer-forensics.sans.org/blog/2009/07/01/top-7-ways-investigators-catch-criminals-using-mobile-device-forensics
http://www.citrix.com/site/resources/dynamic/additional/Citrix_BYO_Index_report.pdf
http://www.citrix.com/site/resources/dynamic/additional/Citrix_BYO_Index_report.pdf
http://www.citrix.com/site/resources/dynamic/additional/Citrix_BYO_Index_report.pdf
http://stackoverflow.com/questions/3811608/access-android-emails-through-content-provider
http://stackoverflow.com/questions/3811608/access-android-emails-through-content-provider
http://stackoverflow.com/questions/3811608/access-android-emails-through-content-provider
http://www.comscore.com/Insights/Press_Releases/2012/11/comScore_Reports_October_2012_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Insights/Press_Releases/2012/11/comScore_Reports_October_2012_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Insights/Press_Releases/2012/11/comScore_Reports_October_2012_U.S._Mobile_Subscriber_Market_Share
http://www.mediapost.com/publications/article/175096/carrier-iq-loses-preliminary-round-in-privacy-laws.html
http://www.mediapost.com/publications/article/175096/carrier-iq-loses-preliminary-round-in-privacy-laws.html
http://www.mediapost.com/publications/article/175096/carrier-iq-loses-preliminary-round-in-privacy-laws.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/reference/android/database/ContentObserver.html
http://developer.android.com/reference/android/database/ContentObserver.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/reference/android/accounts/AccountManager.html
http://developer.android.com/reference/android/accounts/AccountManager.html

S20 J. Grover / Digital Investigation 10 (2013) S12-520

Hoog A. Android forensics: investigation, analysis and mobile security for
Google Android. Waltham, MA: Syngress; 2011.

Hoog A. Open source Android digital forensics application. http://
computer-forensics.sans.org/blog/2010/03/01/open-source-android-
digital-forensics-application; 2010, March 1.

Juniper Networks. MTC mobile signatures. http://www.juniper.net/us/en/
security/mobile-threat-center/# ANDROID:A.Mobistealth; 2012, June 28.

Kovacevic N. SMS broadcastreceiver not called when GO SMS Pro installed.
http://stackoverflow.com/questions/6561297/sms-broadcastreceiver-
not-called-when-go-sms-pro-installed; 2011, July 15.

Lee X, Yang C, Chen S, Wu J. Design and implementation of forensic system
in Android smart phone. http://crypto.nknu.edu.tw/publications/
2010JWIS_Android.pdf; July 2010.

MarketsandMarkets. Bring-your-own-device (BYOD), consumerization of IT
(Co-IT) and enterprise mobility market - Global advancements, busi-
ness models, market forecasts & analysis (2012-2017). http://www.
marketsandmarkets.com/AnalystBriefing/byod-enterprise-mobility-
market.asp; 2012, September 21.

Marks J. ICE drops BlackBerry in favor of iPhone. http://www.nextgov.
com/mobile/2012/10/ice-dumps-blackberry-favor-iphone/58905/;
2012, October 19.

Pettey C. Gartner says two-thirds of enterprises will adopt a mobile de-
vice management solution for corporate liable users through 2017.
http://www.gartner.com/it/page.jsp?id=2213115; 2012, October 25.

Rauf DS. More feds ditch BlackBerrys. http://[www.politico.com/news/
stories/0212/73369.html; 2012, February 28.

Richardson R. 2010/2011 CSI computer crime and security survey. http://
gocsi.com/survey; 2010, December 2.

Shields C, Frieder O, Maloof M. A system for the proactive, continuous,
and efficient collection of digital forensic evidence. In Digital forensics

research workshop 2011 (pp. S3-S11). New Orleans, LA: Elsevier;
August 2011.

US. Census Bureau. USA quickfacts. http://quickfacts.census.gov/qfd/
states/00000.html; 2010.

U.S. Court of Appeals, 9th Circuit. U.S. v. Ziegler. http://www.ca9.uscourts.
gov/datastore/opinions/2007/06/20/05301770.pdf; 2007, June 20.
U.S. Supreme Court. City of Ontario, California, et al. v. Quon et al. http://

www.supremecourt.gov/opinions/09pdf/08-1332.pdf; 2010, June 17.

Valle S. Android forensics & security testing. http://opensecuritytraining.
info/AndroidForensics.html; 2013, January 7.

Vidas T, Zhang C, Christin N. Towards a general collection methodology
for Android devices. In: Digital forensics research workshop 2011,
New Orleans, LA 2011514-24; August 2011.

Villan AG, Esteve]J. Remote control of mobile devices in Android platform.
http://openaccess.uoc.edu/webapps/o2/handle/10609/8131; 2011, June 19.

Yang C-H, Lai Y-T. Design and implementation of forensic systems for
Android devices based on Cloud computing. Applied Mathematics &
Information Sciences Jan. 2012:243S-7S.

Justin Grover has 5 years of experience in the digital forensics field,
working as a cyber security engineer for The MITRE Corporation. He holds
a master’s degree in computing security & information assurance from the
Rochester Institute of Technology and a bachelor’s degree in computer
science from the State University of New York (SUNY) at Geneseo. While
working for MITRE, Mr. Grover has consulted dually as an insider threat
analyst and developer within a security operations center for a large
government organization, supporting over 100 internal investigations. His
recent focus includes research on Android device forensics under MITRE's
innovation program.

http://computer-forensics.sans.org/blog/2010/03/01/open-source-android-digital-forensics-application
http://computer-forensics.sans.org/blog/2010/03/01/open-source-android-digital-forensics-application
http://computer-forensics.sans.org/blog/2010/03/01/open-source-android-digital-forensics-application
http://www.juniper.net/us/en/security/mobile-threat-center/
http://www.juniper.net/us/en/security/mobile-threat-center/
http://stackoverflow.com/questions/6561297/sms-broadcastreceiver-not-called-when-go-sms-pro-installed
http://stackoverflow.com/questions/6561297/sms-broadcastreceiver-not-called-when-go-sms-pro-installed
http://crypto.nknu.edu.tw/publications/2010JWIS_Android.pdf
http://crypto.nknu.edu.tw/publications/2010JWIS_Android.pdf
http://www.marketsandmarkets.com/AnalystBriefing/byod-enterprise-mobility-market.asp
http://www.marketsandmarkets.com/AnalystBriefing/byod-enterprise-mobility-market.asp
http://www.marketsandmarkets.com/AnalystBriefing/byod-enterprise-mobility-market.asp
http://www.nextgov.com/mobile/2012/10/ice-dumps-blackberry-favor-iphone/58905/
http://www.nextgov.com/mobile/2012/10/ice-dumps-blackberry-favor-iphone/58905/
http://www.gartner.com/it/page.jsp%3fid%3d2213115
http://www.gartner.com/it/page.jsp%3fid%3d2213115
http://www.politico.com/news/stories/0212/73369.html
http://www.politico.com/news/stories/0212/73369.html
http://gocsi.com/survey
http://gocsi.com/survey
http://quickfacts.census.gov/qfd/states/00000.html
http://quickfacts.census.gov/qfd/states/00000.html
http://www.ca9.uscourts.gov/datastore/opinions/2007/06/20/0530177o.pdf
http://www.ca9.uscourts.gov/datastore/opinions/2007/06/20/0530177o.pdf
http://www.supremecourt.gov/opinions/09pdf/08-1332.pdf
http://www.supremecourt.gov/opinions/09pdf/08-1332.pdf
http://opensecuritytraining.info/AndroidForensics.html
http://opensecuritytraining.info/AndroidForensics.html
http://refhub.elsevier.com/S1742-2876(13)00048-0/sref22
http://refhub.elsevier.com/S1742-2876(13)00048-0/sref22
http://refhub.elsevier.com/S1742-2876(13)00048-0/sref22
http://openaccess.uoc.edu/webapps/o2/handle/10609/8131

	Android forensics: Automated data collection and reporting from a mobile device
	1 Introduction
	2 Background
	2.1 Android app development terminology
	2.2 Android app security
	2.3 Rooting
	2.4 Smartphone investigations
	2.5 Privacy concerns

	3 Related work
	3.1 Commercial products
	3.2 Academic research

	4 DroidWatch
	4.1 Design and implementation
	4.1.1 System architecture
	4.1.2 User consent to monitoring
	4.1.3 Design strategy
	4.1.4 Local storage
	4.1.5 Enterprise server
	4.1.6 Data process flow
	4.1.7 Data sets

	4.2 Analysis and evaluation
	4.2.1 General usage trends
	4.2.2 Suspicious contacts and communications
	4.2.3 Location monitoring
	4.2.4 Internet history
	4.2.5 Malicious apps

	4.3 Anti-forensics
	4.3.1 Destroying evidence
	4.3.2 Hiding evidence
	4.3.3 Altering evidence sources
	4.3.4 Counterfeiting evidence
	4.3.5 Detecting forensics tools

	5 Future work
	5.1 Additional data sets
	5.2 Anti-tampering mechanisms

	6 Conclusion
	Acknowledgments
	References

