
Chris Melnick www.aardwulf.com Copyright 2004
 - 1 -

What is Base64?

Base64 is a different way of interpreting bits of data in order to transmit that data
over a text-only medium, such as the body of an e-mail.

In the standard 8-bit ASCII character set, there are 256 characters that are used to
format text . However, only a fraction of these characters are actually printable and
readable when you are looking at them onscreen, or sending them in an e-mail.

We need a way to convert unreadable characters into readable characters, do
something with them (i.e. send them in an e-mail), and convert them back to their
original format.

So how do you convert unreadable, nonprintable characters into readable, printable
characters? There are many ways to do this, but the way we are covering now is by
using base64 encoding.

The 256 characters in the ASCII character set are numbered 0 through 255. For the
tech savvy, this is the same as 28, 8 binary placeholders, or a byte. So for any ASCII
character, you simply need one byte to represent this data. As far as a computer is
concerned, there is no difference between an ASCII character, and a number
between 0 and 255 (which is a string of 8 binary placeholders), only how it is
interpreted. Because we are now detached from ASCII characters, you can also
apply these same techniques to binary data, for example, a picture, or executable
file. All you are doing is interpreting data one byte at a time.

The problem with representing data one byte at a time in a readable manner is that
there are not 256 readable characters in the ASCII character set, so we cannot print
a character for each of the 256 combinations that a byte can offer. So we need to
take a different approach to looking at the bits in a byte.

So what if instead of looking at a whole byte, we looked at half of a byte, or 4 bits
(also known as a nibble) at a time. This would be entirely possible because 24 is
equal to 16, and there are certainly sixteen readable characters that we could use to
represent each variation of nibble. This type of translation is known as hex. See
Table 1 for the hex character set.

Unreadable
Data

Readable
Data

Original
Format

Chris Melnick www.aardwulf.com Copyright 2004
 - 2 -

Binary Decimal Hex Binary Decimal Hex

0000 0 0 1000 8 8

0001 1 1 1001 9 9

0010 2 2 1010 10 A

0011 3 3 1011 11 B

0100 4 4 1100 12 C

0101 5 5 1101 13 D

0110 6 6 1110 14 E

0111 7 7 1111 15 F

Table 1

The problem with using hex, is that since you are using one ASCII character (which
is, remember, one byte long in storage space) to represent every four bits, anything
you translate into hex will be exactly twice as big as the original data. This might not
seem like a problem for a small message, but imagine you are trying to send an
image or executable. The original size of perhaps a megabyte or more is now
doubled. Sending this over email or a slow Internet connection will take twice as
long.

Base64 As An Alternative

We now know that using 16 different characters to represent each half byte is a
viable option, but not our ideal option because it is only half as space efficient as a
byte. So how else can we dice bytes up to get our goal: readable characters for any
value of 0 to 255?

Instead of looking at one byte at a time, and trying to chop that byte up, take
several bytes and see what we can do with them.

Byte 1 Byte 2 Byte 3

0000 0000 0000 0000 0000 0000

Table 2

As you can easily see, using three bytes, we have a total of 24 bits. How else can we
chop 24 bits up? If instead of 3 bytes of 8 bits each we use 4 "clumps" of 6 bytes
each, what are we left with? Now we have 26 which equals 64. So now instead of
needing 3 instances of a character that can represent any of 256 different
combinations, we now need just 4 instances of a character that can represent any of
64 different combinations. The same bits as in the above table fit into the table
below.

Clump 1 Clump 2 Clump 3 Clump 4

000000 000000 000000 000000

Table 3

Chris Melnick www.aardwulf.com Copyright 2004
 - 3 -

Now we have to ask ourselves, "do we have 64 readable characters?". The answer is
yes. The characters we will use are uppercase A-Z (26 characters), lowercase a-z (26
characters), 0-9 (10 characters), '+' (1 character) and '/' (1 character). 26 + 26 +
10 + 1 + 1 = 64, just the number we need. As you can surmise, base64 is still less
space efficient than using a full byte, but instead of hex's double space usage,
base64 uses only one and a third as much space. In other words for every 3 bytes,
you must have 4 base64 characters. All of the characters listed above are easily
readable.

The Mechanics of Base64: Encoding

How does the actual translation from bytes to base64 characters occur? We must
first set up a mapping of values (0 through 63) to base64 characters (A-Z, a-z, 0-9,
'+', and '/'). We can do this by creating a character array using the values from
Table 4.

char base64Chars[] = {‘A’, ‘B’, ‘C’, ..., ‘9’, ‘+’, ‘/’};

Value: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

base64: A B C D E F G H I J K L M N O P

Value: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
base64: Q R S T U V W X Y Z a b c d e f

Value: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
base64: g h i j k l m n o p q r s t u v

Value: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
base64: w x y z 0 1 2 3 4 5 6 7 8 9 + /

Table 4

For example, for a value of 25 (which is 011001 in binary) the base64 character
would be 'Z', the character for binary 101010 (which is 42 in decimal) the base64
character would be 'q'.

char tempBase64Char;
tempBase64Char = base64Chars[25]; // tempBase64Char is now ‘Z’
tempBase64Char = base64Chars[42]; // tempBase64Char is now ‘q’

Let's start with something simple, a text -to-base64 conversion. We will convert the
string "Hello World!" to a base64 representation. We will start by getting the ASCII
and binary byte values for each letter. (See Table 5).

Character: H e l L o [space]

ASCII Value: 72 101 108 108 111 32

Binary Value: 01001000 01100101 01101100 01101100 01101111 00100000

Character: W o R L d !
ASCII Value: 87 111 114 108 100 33

Binary Value: 01010111 01101111 01110010 01101100 01100100 00100001

Chris Melnick www.aardwulf.com Copyright 2004
 - 4 -

Table 5

Remember that for base64, we will be using three bytes at a time. Each ASCII
character is one byte, so we will be working with "Hel", "lo[space]", "Wor", and "ld!"
separately.

Let's start with the first three characters:

1. Convert the characters to binary.
2. "Hel" is 01001000 01100101 01101100 in binary. (Notice that there are 24

bits).
3. Convert the 24 bits from three 8 bit groups to four 6 bit groups.

01001000 01100101 01101100 becomes 010010 000110 010101 101100.
4. Convert each of the four 6 bit groups into decimal.

010010 = 18
000110 = 6
010101 = 21
101100 = 44

5. Use each of the four decimals to look up the base64 character code.
18 = 'S'
6 = 'G'
21 = 'V'
44 = 's'

6. You now have your first three ASCII characters ("Hel") encoded as base64
("SGVs").

Follow these steps for the next 9 ASCII characters and you get the following results:
"Hel" = SGVs
"lo[space]" = bG8g
"Wor" = V29y
"ld!" = bGQh

The phrase "Hello World!" has been converted to "SGVsbG8gV29ybGQh". The
original phrase has exactly 12 ASCII characters, and is represented by 16 base64
characters, exactly one and one third more than the original text.

So what happens, you might ask, if you don't have exact sets of three bytes? What if
you had remainder bytes left over? For example, what if the data you had was
"Hello" (5 ASCII characters, 5 bytes)? What if it was "blue" (4 ASCII characters, 4
bytes)? In those cases, you have groups of less than three letters: "Hello" groups
into "Hel" "lo", and "blue" groups into "blu" "e".

To handle these cases, we throw one more readable character into our base64
character list. This character is not in the lookup table because it is only reserved for
the two cases where you have one or two remainder bytes after grouping. We use
the "=" character. Let's start with "Hello".

Character: H E l l o

ASCII Value: 72 101 108 108 111

Binary Value: 01001000 01100101 01101100 01101100 01101111

Table 6

Chris Melnick www.aardwulf.com Copyright 2004
 - 5 -

Follow the same exact steps for the first three characters as above. Your first three
ASCII characters "Hel" are the same base64 as before "SGVs". For the remaining 2
characters, follow these steps:

1. Convert the characters into binary.
"lo" is 01101100 01101111 in binary.

2. Starting from the left, separate the bytes into 6 bit chunks as best as
possible.
01101100 01101111 becomes 011011 000110 1111.

As you can see, we still need two more bits for the last group, plus a whole other six
bits for the full four base64 characters. What we need is something looking like
011011 000110 1111xx xxxxxx. We can convert 011011 and 000110 to decimal just
fine.

011011 = 27
000110 = 6
1111xx = what?
xxxxxx = what?

To resolve this problem, we fill the last two bits of 1111xx with 0's, so 111100 = 60.
We now have:

011011 = 27
000110 = 6
111100 = 60
xxxxxx = what?

Our base64 characters so far are "bG8". Since we are missing one single complete
base64 character, we add one of our special "=" characters to the back to signify
that we are missing one byte. Our complete converted base64 string is now "bg8=".
So the word "Hello" translates to "SGVSbg8=".

We do the same thing for the word "blue", which is missing 2 bytes.

Character: b L u e

ASCII Value: 98 108 117 101

Binary Value: 01100010 01101100 01110101 01100101

The first three characters should be easy by now to convert. "blu" is 01100010
01101100 01110101. Translate that to 6 bit groups and you get 011000 100110
110001 110101. These convert to "Ymx1" in base64. Now you have one remaining
character, "e". We do the exact same thing as last time. "e" in binary is 01100101.
When you split that into four 6 bit groups, you get the following:

011001 = 25
01xxxx = what?
xxxxxx = what?
xxxxxx = what?

Fill the second group with 0's to be able to look it up. 011001 010000 xxxxxx xxxxxx
becomes "ZQ". Because you were missing two complete bytes, add two of our
special character on the end. So the letter "e" in ASCII becomes "ZQ==". The word
"blue" becomes "Ymx1ZQ==".

Note: I said before that base64 encoding is one and one third larger than the byte

Chris Melnick www.aardwulf.com Copyright 2004
 - 6 -

representation. In the cases were you are missing a byte, it is actually slightly more
than this. The actual range is from exactly one and one third to one and one third
plus two characters.

The Mechanics of Base64: Decoding

We will now tackle translating from base64 characters back into normal bytes. We
will use the same mapping of values (0 through 63) to base64 characters (A-Z, a-z,
0-9, '+', and '/').

The reverse process is relatively simple now that we know how to perform the
forward operation. Let’s start with the base64 string "YmFzZTY0IGlzIGZ1biEh". Right
now, that makes no sense. We begin the same way, by looking up the value for each
base64 character.

Character: Y m F z

base64 Value: 24 38 5 51

Binary Value: 011000 100110 000101 110011

Character: Z T Y 0
base64 Value: 25 19 24 52

Binary Value: 011001 010011 011000 110100

Character: I G l z

base64 Value: 8 6 37 51

Binary Value: 001000 000110 100101 110011

Character: I G Z 1
base64 Value: 8 6 25 53

Binary Value: 001000 000110 011000 110101

Character: b i E h
base64 Value: 27 34 4 33

Binary Value: 011011 100010 000100 100001

Table 7

It is very important to remember that when you are encoding, you use 8 bits for
each character, and when you are decoding you use 6 bits for each character!

Once again, we start by chopping it into smaller pieces and work on each piece.
When we are decoding a base64 string into normal bytes, we use 4 characters at a
time instead of the 3 we used when encoding. So our base64 string is broken up
from "YmFzZTY0IGlzIGZ1biEh" into "YmFz", "ZTY0", "IGlz", "IGZ1", and "biEh".
Instead of using a number to look up a base64 character, we are now using a base64
character to look up a number. Reference Table 4 for these values.

Lets start with our first group, "YmFz".

1. Convert the base64 characters to binary. (Remember to use 6 bit binary!)
"YmFz" is 011000 100110 000101 110011 in binary.

Chris Melnick www.aardwulf.com Copyright 2004
 - 7 -

2. Convert the 24 bits from four 6 bit groups to three 8 bit groups.
011000 100110 000101 110011 becomes 01100010 01100001 01110011.

3. Convert each of the three 8 bit groups into decimal.
01100010 = 98
01100001 = 97
01110011 = 115

4. Use each of the three decimals to look up the ASCII character for that value.
98 = 'b'
97 = 'a'
115 = 's'
You now have your first four base64 characters ("YmFz") decoded as ASCII
("bas").

Follow these steps for the next 16 base64 characters and you get the following
results: "ZTY0" = "e64"
"IGlz" = " is"
"IGZ1" = " fu"
"biEh" = "n!!"
The encoded base64 string "YmFzZTY0IGlzIGZ1biEh" has been decoded to "base64 is
fun!!".

We know how to encode bytes when we don't have exact groups of three to work
with. But how do you decode base64 that has our special symbol, "="? It is very
similar, you just have to remember the rules that caused us to use the "=". One
thing before we get started: base64 encoded text will always be in groups of 4
base64 characters; if the number of base64 characters is not divisible by 4 with no
remainder, then you have corrupted data.

Let's try decoding a base64 string that contains the "=" symbol. Our string this time
will be "Li4ub3IgbWF5YmUgbm90Lg==". The first thing we do is divide this up into
groups of four characters. "Li4ub3IgbWF5YmUgbm90Lg==" becomes "Li4u", "b3Ig",
"bWF5", "YmUg", bm90", and "Lg==". The first five quartets are decoded in the
exact same manner. We just need to learn what to do for the last quartet, "Lg==".

Remember what the "="s mean: one "=" means that we were missing one whole
byte when we encoded the data, two "="s means that we were missing two whole
bytes when we encoded the data. We begin in the same way as before.

1. Begin by converting the base64 characters to their base64 values.
'L' = 11
'g' = 32
'=' = nothing
'=' = nothing

2. Convert the values to binary.
11 = 001011
32 = 100000
nothing = xxxxxx (just to call it something)
nothing = xxxxxx (just to call it something)

3. Convert the four 6 bit groups into three 8 bit groups.
001011 100000 xxxxxx xxxxxx becomes 00101110 0000xxxx xxxxxxxx.

Chris Melnick www.aardwulf.com Copyright 2004
 - 8 -

We know that because we had two "="s at the end, that we were missing two
complete bytes in the original data. Remember where we had to add zeros when we
encoded into base64? Those are the zeros you see in the second 8 bit group
("0000xxxx"). Because each of these 8 bit groups represents one byte from the
original data, and we know that we are missing two whole bytes, we discard the last
two 8 bit groups, "0000xxxx" and "xxxxxxx". So the only data we now need to worry
about is the first byte, 00101110. We convert this value to decimal.

00101110 = 46
We convert the 46 to ASCII and we get the character '.' and add this to the other
data that we have decoded.

"Li4u" = "..."
"b3Ig" = "or "
"bWF5" = "may"
"YmUg" = "be "
"bm90" = "not"
"Lg==" = "."

Our final decoded string is "...or maybe not."

Try It Yourself
(Use http://www.aardwulf.com/tutor/base64/base64.html to check your answers)
Here are a handful of examples for you to play around with. For problems 1-3,
follow these steps:

1. Convert each character from ASCII into binary bytes (using 8 bits per
character). Make sure to get the correct case of the letter. (Use Table 8.)

2. Divide your bytes into groups of three bytes.
3. Chop each group of three bytes into 4 six bit clumps.
4. Convert each clump into decimal.
5. Look up the corresponding base64 character from Table 4.

Problem 1:
Convert the following into base64:

aardwulf.com is great

Your Answer:

Problem 2:
Convert the following into base64:

Zeros and ones make no sense.

Your Answer:

Problem 3:
Convert the following into base64:

A man, a plan, a canal. Panama!

Your Answer:

Chris Melnick www.aardwulf.com Copyright 2004
 - 9 -

For problems 4-6, follow these steps:
1. Convert each character from base64 to a six bit clump. Remember special

rules about the ‘=’ character. (Use Table 4.)
2. Divide your clumps into groups of four clumps of bits (24 bits each group).
3. Divide each group into 3 eight bit bytes.
4. Convert each byte into decimal.
5. Look up the corresponding ASCII character from Table 8.

Problem 4:
Convert the following into normal ASCII text:

WW91IGFyZSBkb2luZyB2ZXJ5IHdlbGwh

Your Answer:

Problem 5:
Convert the following into normal ASCII text:

SnVzdCBvbmUgbW9yZSBsZWZ0IHRvIGRlY29kZS4=

Your Answer:

Problem 6:
Convert the following into normal ASCII text:

Q29uZ3JhdHVsYXRpb25zISBZb3UgYXJlIG5vdyBhIGJhc2U2NCBndXJ1IQ==

Your Answer:

Chris Melnick www.aardwulf.com Copyright 2004
 - 10 -

7 bit Original ASCII (readable characters)

Decimal Character Hex Binary Decimal Character Hex Binary
0-
31

Unreadable
Characters

00-
1F

00000000-
00011111

32 (space) 20 00100000 80 P 50 01010000
33 ! 21 00100001 81 Q 51 01010001
34 " 22 00100010 82 R 52 01010010
35 # 23 00100011 83 S 53 01010011
36 $ 24 00100100 84 T 54 01010100
37 % 25 00100101 85 U 55 01010101
38 & 26 00100110 86 V 56 01010110
39 ' 27 00100111 87 W 57 01010111
40 (28 00101000 88 X 58 01011000
41) 29 00101001 89 Y 59 01011001
42 * 2A 00101010 90 Z 5A 01011010
43 + 2B 00101011 91 [5B 01011011
44 , 2C 00101100 92 \ 5C 01011100
45 - 2D 00101101 93] 5D 01011101
46 . 2E 00101110 94 ^ 5E 01011110
47 / 2F 00101111 95 _ 5F 01011111
48 0 30 00110000 96 ` 60 01100000
49 1 31 00110001 97 a 61 01100001
50 2 32 00110010 98 b 62 01100010
51 3 33 00110011 99 c 63 01100011
52 4 34 00110100 100 d 64 01100100
53 5 35 00110101 101 e 65 01100101
54 6 36 00110110 102 f 66 01100110
55 7 37 00110111 103 g 67 01100111
56 8 38 00111000 104 h 68 01101000
57 9 39 00111001 105 i 69 01101001
58 : 3A 00111010 106 j 6A 01101010
59 ; 3B 00111011 107 k 6B 01101011
60 < 3C 00111100 108 l 6C 01101100
61 = 3D 00111101 109 m 6D 01101101
62 > 3E 00111110 110 n 6E 01101110
63 ? 3F 00111111 111 o 6F 01101111
64 @ 40 01000000 112 p 70 01110000
65 A 41 01000001 113 q 71 01110001
66 B 42 01000010 114 r 72 01110010
67 C 43 01000011 115 s 73 01110011
68 D 44 01000100 116 t 74 01110100
69 E 45 01000101 117 u 75 01110101
70 F 46 01000110 118 v 76 01110110
71 G 47 01000111 119 w 77 01110111
72 H 48 01001000 120 x 78 01111000
73 I 49 01001001 121 y 79 01111001
74 J 4A 01001010 122 z 7A 01111010
75 K 4B 01001011 123 { 7B 01111011
76 L 4C 01001100 124 | 7C 01111100
77 M 4D 01001101 125 } 7D 01111101
78 N 4E 01001110 126 ~ 7E 01111110
79 O 4F 01001111 127 Unreadable

Character
7F 01111111

Table 8

